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Exact Static Soliton Solutions of ���3 1 1���-Dimensional Integrable Theory
with Nonzero Hopf Numbers
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In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with
nonzero Hopf topological charges) within the recently proposed �3 1 1�-dimensional, integrable, and
relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their
product is equal to the Hopf charge which provides a lower bound to the soliton’s finite energy. The
Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of
linked closed vortices.
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Recent numerical studies of the Faddeev-Skyrme
modified O(3) sigma model [1] support the existence
of static toroidal solutions stabilized by their nonzero
Hopf numbers [2]. The emerging stringlike structures
are quite intriguing and may find applications in various
physical models of condensed matter physics and gauge
field theory. It is therefore of direct physical interest to
find a field theoretical model for which it is possible to
write down in a closed form explicit soliton solutions
with nonzero Hopf index (Hopfians). This will advance
an understanding of stringlike soliton configurations and
their properties and open a way to incorporate them into
various models relevant for physical applications.

In Ref. [3], we have introduced the three-dimensional
field model which falls into a class of higher dimensional
integrable models from the point of view of the general-
ized zero-curvature approach [4]. The question posed in
[3] was whether this form of integrability is linked to the
existence of soliton solutions as is expected from the study
of two-dimensional integrable models. Our analysis of
the model in [3] has indeed revealed one nontrivial soliton
solution described by a standard Hopf map of unit Hopf
index. To fully establish a connection between integrabil-
ity and soliton solutions would require finding other topo-
logical solitons with arbitrary topological charges. This
is accomplished in this Letter. The equations of motion
of the model are solved in toroidal coordinates and the
space of solutions is found to be represented by a family
of maps �3 ! �2 labeled by two integers. The integers
count the number of times the map winds around two in-
dependent angular directions.

The model under consideration is described by the
Lagrangian density

L � 2h0�H2
mn�3�4, (1)

where h0 � 61 determines the choice of the signature
of the Minkowski metric, gmn � h0 diag�1, 21, 21, 21�,
and the field tensor Hmn is defined in terms of the three
component, unit vector field �n [ S2 as
0031-9007�99�83(9)�1723(4)$15.00
Hmn � �n ? �≠m �n 3 ≠n �n� . (2)

The action in (1) is O(3) and Poincaré invariant. The
value 3

4 of the power of H2
mn in (1) is such that the the-

ory circumvents the usual obstacle of Derrick’s scaling
argument against the existence of stable solitons. We are
interested in the boundary condition �n � �0, 0, 1� at spa-
tial infinity. This condition compactifies effectively the
Euclidean space �3 to the three-sphere S3. Accordingly,
�n becomes a map: S3 ! S2. Because of p3�S2� � �, the
field configurations fall into disjoint classes characterized
by the value of the Hopf invariant QH .

Using stereographic projection of S2,

�n �
1

1 1 juj2
���u 1 u�, 2i�u 2 u��, juj2 2 1��� , (3)

one obtains

Hmn �
22i

�1 1 juj2�2 �≠mu≠nu� 2 ≠nu≠mu�� , (4)

where u is the complex scalar field.
In terms of the vector quantities

Km �
i
2

�1 1 juj2�2Hmn≠nu

� �≠nu�≠nu�≠mu 2 �≠nu�2≠mu� (5)

and

Km �
�K≠u��21�4Km

1 1 juj2
, (6)

the corresponding equations of motion can be rewritten
compactly as

≠mKm � 0 . (7)

Notice that the Lagrangian density (1) has a branch
cut when Hmn vanishes. Both Km and Hmn vanish for
configurations of the form u � r�u�eiu , where r is an
arbitrary function of u, and u is an arbitrary and real
function of the space-time coordinates. In what follows
we shall exclude such class of vacuum configurations.
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The quantity (5) automatically satisfies the relations

Km≠mu � 0 Im�Km≠mu�� � 0 , (8)

which play a crucial role in establishing integrability of
the model. Indeed, using relations (8) and the equations
of motion (7) one obtains an infinite number of conserved
currents given by

Jm � Km

dG
du

2 K�
m

dG
du�

, (9)

with G being any functional of u and u� only (no deriva-
tives). In Ref. [3] we have analyzed the integrability
properties of this theory using the generalized version of
the zero curvature condition [4]. The equations of motion
(7) can be represented as ≠mBm 1 �Am, Bm� � 0, with
Am being a flat SU(2) connection, and Bm being an op-
erator living in any integer spin representation of SU(2)
(for more details see [3,4]). The integrability properties
emerge due to the fact that Bm can be put in any inte-
ger spin representation, and that is a direct consequence
of Eq. (8) [4,5]. In Ref. [3], we have shown that the
existence of the conserved currents as in (9) is related to
“hidden symmetries” of the equations of motion. In other
words, the zero curvature condition, which is equiva-
lent to the equations of motion, is invariant under an infi-
nite nonsemisimple gauge group, as a consequence of the
existence of a singlet state of the integer spin representa-
tions of SU(2).

Another point is whether such an infinite number
of conservation laws leads to the exact integrability of
the model, in a way similar to what happens in the
two-dimensional integrable theories. This question is
addressed here indirectly by showing the existence of an
infinite number of static soliton solutions.

What shall look for time-independent solutions to
equations of motion (7) of the type (we shall take m and
n integers in order for u to be single valued)

u�h, j, w� � f�h�ei�mj1nw�, (10)

where we used toroidal coordinates on �3:

x � aq21 sinhh cosw, y � aq21 sinhh sinw ,

z � aq21 sinj; a . 0; q � coshh 2 cosj .

(11)

The angles j, w both vary from 0 to 2p and h varies
from 0 to `. The surfaces of constant h are toroids that
circle the z axis, j � const are spheres, and w � const
are half-planes. The corresponding gradient of u becomes
in toroidal coordinates

�=u � �q�a�ei�mj1nw�
µ
f 0�h�êh 1 imf�h�êj

1 inf�h�
êw

sinhh

∂
, (12)

where we introduced the unit vectors spanning the or-
thogonal toroidal coordinate system having properties
êi ? êj � dij, i, j � h, j, w.
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In terms of the vector-field �K � � �K ?
�=u��21�4 �K��juj2 1 1� the equations of motion (7)
become, in the static case, �= ? �K � 0; i.e., �K is
solenoidal. Using (10) and (12) we obtain for the
components of �K

Kh � K0

µ
m2 1

n2

�sinhh�2

∂
f; Kj � imK0f

0;

Kw � inK0
f 0

sinhh
,

(13)

with

K0 �
p

2 �q�a�2ei�mj1nw�
µ
m2 1

n2

�sinhh�2

∂21�4

3
f1�2f 01�2

� f2 1 1�
, (14)

where the components of the vector field are defined
according to �V � êhVh 1 êjVj 1 êwVw .

Plugging the components of �K into the expression for
divergence of the vector field in the toroidal coordinates

�= ? �V �
q
a

∑
≠Vh

≠h
1

≠Vj

≠j
1

1
sinhh

≠Vw

≠w
2 2Vj

sinj

q

1 Vh

µ
coshh

sinhh
2

2 sinhh

q

∂∏
, (15)

we arrive at

≠

≠h
ln

ff 0

� f2 1 1�2 � 2
2m2�sinhh�2 2 n2

m2�sinhh�2 1 n2

coshh

sinhh
.

(16)

We take m2 . n2 in Eq. (16). The integration yields

1
f2 1 1

�
2k1

jmj �m2 2 n2�
coshh

� n22m2

m2 1 cosh2h�1�2
1 k2 ,

(17)

with k2 being the integration constant of the last integra-
tion. Imposing boundary conditions

�n ! �0, 0, 1� or juj ! ` or f ! ` as h ! 0 ,

(18)

�n ! �0, 0, 21� or u ! 0 or f ! 0 as h ! ` ,

(19)

one gets

f2 �
coshh 2

q
n2�m2 1 sinh2hq

1 1 �m2�n2� sinh2h 2 coshh
. (20)

One observes that f depends only on the ratio m2�n2, and
that f2 $ 0 for any value of m2�n2. Note that taking the
limit m ! n in (20) and using L’Hôpital’s rule yields

lim
m!n

f2 �
1

sinh2h
, (21)
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which gives for m � n a solution

u �
eim�j1w�

sinhh
. (22)

In the special case of m � n � 1, Eq. (22) reproduces
the standard soliton solution [3,6]. Expression (22) can
be written as a composite of the Hopf map together with
the stereographic map: �3 ! S3 of degree 1.
A formula,

E �
Z

d3x Q00 � 83�4
Z

d3x
�Ki≠

iu��3�4

�1 1 juj2�3 , (23)

describes energy of the static configuration [3]. Inserting
our solution into (23) we obtain an expression for the
energy E � Em,n of the soliton configuration
Em,n � �2p�28 3 23�4
Z `

0

dh sinhh

�1 1 f�3

µ
m2 1

n2

�sinhh�2

∂3�4

f3�2f 03�2, (24)
which after the h integration yields

Em,n � �2p�24 3 21�4
q
jnj jmj �jnj 1 jmj� . (25)

We now turn to calculation of the Hopf numbers.
Define functions Fi , i � 1, . . . , 4, as follows:

F� 1
2
� �

µ
coshh 2 �n2�m2 1 sinh2h�1�2

�jm�nj 2 1� �n2�m2 1 sinh2h�1�2

∂1�2

3

Ω
cosmj

sinmj

æ
, (26)

F� 3
4
� �

µ
�1 1 �m2�n2� sinh2h�1�2 2 coshh

�jm�nj 2 1� �n2�m2 1 sinh2h�1�2

∂1�2

3

Ω
cosnw

2 sinnw

æ
. (27)

They provide parametrization of S3 and satisfy

u �
Z1

Z2
�

F1 1 iF2

F3 1 iF4
jZ1j

2 1 jZ2j
2 � 1 (28)

or equivalently, for �n defined from u via relation (3),

ni � ZysiZ; Zy � �Z�
1 , Z�

2 �; Z �

µ
Z1

Z2

∂
.

(29)

Let, furthermore,

Ai �
i
2

�Zy≠iZ 2 ≠iZ
yZ� (30)

be a vector potential for the two-form Hij � ≠iAj 2

≠jAi . In terms of the toroidal coordinates the components
of �A are

Ah � q≠h�F3F4�; Aj � 2mq�F2
1 1 F2

2�;

Aw � 2
nq

sinhh
�F2

3 1 F2
4� .

(31)

Next, we calculate the vector function �B � �= 3 �A (such
that Bi � eijkHjk�2), using expression for the curl opera-
tor in toroidal coordinates and plugging it into the Hopf
index defined as

QH �
1

4p2

Z
d3x �A ? �B (32)

for which we now find

QH �
nm
2

∑
�F2

1 1 F2
2�2j`0 2 �F2

3 1 F2
4�2j`0

∏
� 2nm .

(33)

It is always possible to choose the Hopf index such that it
is positive QH $ 0. This amounts to the right choice of
orientation, which determines the sign of QH .

Note that the following inequality,

jmj 1 jnj $ 2
p
jnj jmj , (34)

always holds. Henceq
jnj jmj �jnj 1 jmj� $

p
2 �jnj jmj�3�4

! Em,n $ �2p�24 3 23�4jQH j
3�4, (35)

which agrees with the lower bound result by [7] for the
Faddeev-Skyrme model.

Notice that the solution obtained above implies that the
vertex field �n [see Eq. (3)] is given by

n1 �
2f

f2 1 1
cos�mj 1 nw�;

n2 �
2f

f2 1 1
sin�mj 1 nw�; (36)

n3 �
f2 2 1
f2 1 1

.

Since f is a function of h only, one observes that the
surfaces of constant n3 are tori. In addition, on those
surfaces, the lines of constant n1 and n2 wind around
the tori with frequencies in the j and w directions given
by m and n, respectively. One can check that n3 falls
monotonically from n3 � 1 at h � 0 to n3 � 21 at
h � `. In addition, the bigger the ratio m�n is, the faster
it performs that flip. Therefore the size of our soliton
decreases with the increase of m�n.
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The Hopf index of our solution can alternatively be
calculated in the following way. The solution provides a
mapping of the spatial �3 into S3 defined by

P4
i�1 F

2
i �

1. Then, Eqs. (3) and (28) provide the Hopf map S3 !
S2. The Hopf index is given by the linking number of
the preimages, under the Hopf map, of any two points of
S2. Consider the point �n � �0, 0, 21� which corresponds
in �3 to h ! `. For this value of h, F1, F2 go to zero,
F3 � cosnw, and F4 � 2 sinnw. On S3 we find the
circle F

2
3 1 F

2
4 � cos2nw 1 sin2nw � 1 of radius 1,

and as w varies between 0 and 2p the preimage wraps jnj
times around the w direction. Similarly, the preimage of
�n � �0, 0, 1� corresponds to h � 0. For this value of h,
F3, F4 go to zero, F1 � cosmj, and F2 � sinmj. On
S3 we find the circle F

2
1 1 F

2
2 � cos2mj 1 sin2mj �

1 of radius 1, and as j varies between 0 and 2p the
preimage wraps jmj times around the j direction. Since
these two circles intersect, the linking number is jnmj.
That is, indeed, the Hopf number calculated above.

Finally, let us mention that other models circumventing
Derrick’s theorem have been proposed previously in the
literature [6,8]. A common feature is that, like the model
considered in the present paper, the Lagrangians are non-
polynomial functions of the fields and their derivatives.
The corresponding solutions have been constructed and in
the special case of [6] a soliton with the unit Hopf charge
was obtained. To our knowledge, an infinite number of
1726
soliton solutions to the field theoretical equations of mo-
tion with the Hopf charges bigger than unity were not
obtained previously in the literature in an exact form.
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