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The form invariance of the statement of the maximum entropy principle and the metric structur
quantum density matrix theory, when generalized to nonextensive situations, is shown here to dete
the structure of the nonextensive entropies. This limits the range of the nonextensivity parameq
to �0, 1� so as to preserve the concavity of the entropies. The Tsallis entropy is thereby found t
appropriately renormalized.
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Nonextensive generalization of Boltzmann-Gibb
statistical mechanics is found to be essential for a cog
description of a large number of observed phenome
involving (multi)fractal structures, long-range interac
tions, and long-time memories, which are increasing
of general interest in many facets of physical scienc
In particular, the form of the generalization originall
proposed by Tsallis [1] has been widely used to analy
many such systems, phenomena, and theories. Exam
are Lévy-type random walks and anomalous diffusion [2
hydrogen-atom specific heat [3], pure-electron plasm
[4], stellar polytropes [5], mean-field magnetization [6
velocity distribution of clusters of galaxies [7], interpola
tive quantum statistics [8], generalized theory of therm
Green’s functions [9], quantum entanglement [10
analysis of high energy processese1e2 ! hadrons [11],
and others discussed recently [12]. (A comprehensive
of references to the literature on this subject is curren
available at the URL [13].) However, some ambiguitie
in the early proposal have remained and attempts h
been made to rectify them by introducing appropria
definitions of generalized expectation values in ord
to be in conformity with the conventional propertie
of statistical principles [14]. These modifications hav
been more or lessad hoc, thus inviting investigations of
guiding principles which would lead to a clear basis f
any proposed forms for the generalizations of Boltzman
Gibbs statistical mechanics.

In this paper, it is suggested that the idea of the re
tive entropy as propounded by Kullback and Leibler [1
can provide such a guiding principle for determining u
ambiguously the structure of the nonextensive entropi
in the same way that was used by Jaynes [16,17] in
swering the question “Why maximize entropy—why no
some other measure of uncertainty?” This is because
Kullback-Leibler (KL) entropy gives a measure of unce
tainty in the objective statêr with respect to the reference
stater̂0:

K1� r̂, r̂0� � Tr� r̂�lnr̂ 2 lnr̂0��

� Tr� r̂�lnr̂021 2 lnr̂21�� $ 0 , (1)
0031-9007�99�83(9)�1711(4)$15.00
s
ent
na
-
ly

es.
y
ze
ples
],
a

],
-
al
],

list
tly
s

ave
te
er
s
e

or
n-

la-
5]
n-
es,
an-
t
the
r-

where r̂ and r̂0 are normalized density matrices. Th
second form is given here in anticipation of its genera
ization later in this paper. The equality holds if and on
if r̂ � r̂0. ThereforeK1�r̂, r̂0� quantifies the difference
betweenr̂ andr̂0. It is a physically measurable quantit
unlike the entropy itself and serves to affirm the natu
of maximum entropy principle [16,17], as well as an un
derlying geometric structure [18]. These two principle
namely, a version of the maximum entropy principle
be derived as in Eq. (3) and the metric structure to be
duced as in Eqs. (7) and (8) subsequently in this paper
extensive systems, provide us with structural forms whi
we hold as the “form invariant structures” that any gene
alization to nonextensive entropy should satisfy. We w
discuss here a similarly defined relative entropy for t
nonextensive systems along with the appropriate defi
tion of the normalizedq-expectation values. The centra
result of this analysis is that the original Tsallis entrop
should be properly modified in order to establish the for
invariance by presenting the generalizations of the abo
two properties. The KL entropy in Eq. (1) and th
von Neumann entropy in Eq. (2) below are presented
these particular ways in anticipation of the form invar
ance that we are seeking when they are generalized.
like the original Tsallis entropy, this modified form is
found to be concave only if the nonextensivity parame
q lies in the interval�0, 1�, into which all of the nonexten-
sive Hamiltonian systems seem to fall [19].

We begin by deriving the above-mentioned two pro
erties in the Boltzmann-Gibbs context so as to provi
us with the guiding equations, with which the results
our generalization should conform. We do this in th
quantum-mechanical context by maximizing the von Ne
mann entropy

S1� r̂� � 2Tr� r̂ lnr̂� � Tr� r̂ lnr̂21� (2)
subject to the constraints of the expectation value of t
energy U1 � Tr� r̂Ĥ� � �Ĥ�1 (where Ĥ is the Hamil-
tonian operator of the system under consideration) a
the normalization of the density matrix. Throughout th
paper, we use units with the Boltzmann constantkB set
equal to unity. The resulting density matrix is found t
© 1999 The American Physical Society 1711
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be r̂0 � exp�2b�Ĥ 2 U1���Z1�b�. Here, b is the La-
grange multiplier associated with the energy constraint
which is identified with the inverse temperature, and
Z1�b� � Tr exp�2b�Ĥ 2 U1�� is equivalent to the stan-
dard partition function. Using this in Eq. (1), we have the
following maximum entropy relation:

K1� r̂, r̂0� � S1� r̂0� 2 S1� r̂� 1 b�Ĥ 2 U1�1 $ 0 .

(3)

This is the first of the equations, the form of which we
wish to preserve in our nonextensive generalization.

On the other hand, suppose the density matrices are
characterized by a parameter a. (Extension to the case
of multiparameter is straightforward.) Since r̂�a� is
a Hermitian, positive semidefinite, traceless operator, it
can be expanded in terms of its orthonormal eigenbasis
	ja�a��
 as follows:
1712
r̂�a� �
X
a

pa�a� ja�a�� �a�a�j . (4)

The expansion coefficients are usually interpreted as the
probabilities of finding the system in the eigenbasis states
	ja�a��
 and therefore satisfy the relations

0 # pa�a� # 1 ,
X
a

pa�a� � 1 . (5)

Taking r̂0 � r̂�a� and r̂ � r̂�a 1 da� (where da is an
infinitesimal change of a) in Eq. (1), up to the second
order in da, we find the following metric:

ds2 � K1� r̂, r̂0� 1 K1�r̂0, r̂� � ds2
cl 1 ds2

qu , (6)

ds2
cl � �da�2

X
a

�≠apa�a��2

pa�a�

� 4�da�2�����≠a lnp21�2
a �a��2����1 , (7)
ds2
qu � 2�da�2

X
a,a0

j�a0�a� j �≠aja�a��j2pa�a� �lnp21
a0 �a� 2 lnp21

a �a��

� 2�da�2

****X
a0

j�a0�a� j �≠aja�a��j2�lnp21
a0 �a� 2 lnp21

a �a��

++++
1

, (8)
where the double bracket symbol stands for the ordinary
expectation value with respect to pa�a�. This is the
second of the equations, the form of which we wish to
preserve in our nonextensive generalization. We note
that Eq. (7) does not contain the overlap between basis
vectors, resembling the classical Fisher metric (i.e., the
KL divergence) even though it has quantum probabilities,
whereas Eq. (8) is explicitly quantum in nature by virtue
of the presence of the overlap. The latter quantity is seen
to be positive, implying the quantum contribution expands
the scale of length as it should do. To the best of our
knowledge, this observation has not been previously made
in the literature.

The structures exhibited in Eqs. (3) and (6) will be the
two chosen forms which any generalization of S1� r̂� to
a nonextensive entropy is required to satisfy. Thus our
proposal of a guiding principle is to maintain the “ form
invariance” of these equations in such a generalization.

The following form of the generalized KL or q-KL
entropy

K
�a�
q � r̂, r̂0� � Tr�r̂q�Lnqr̂021 2 Lnqr̂21���Tr� r̂q� $ 0

(9)

and the modified form of the Tsallis entropy

S
�a�
q � r̂� � Tr�r̂q Lnqr̂21��Tr� r̂q� , (10)

where

Lnqx � �xq21 2 1���q 2 1� , (11)

will be shown to lead to form invariant structures in
the sense defined above. In the limit q ! 12, Eqs. (9),
(10), and the definition of Lnqx become Eqs. (1), (2), and
the standard logarithm, lnx, respectively. Expressions (9)
and (10) correspond to those given in Refs. [1,20,21]
divided by Tr� r̂q� � cq�r̂�, respectively. Although the
inequality in Eq. (9) holds for any positive q, the entropy
(10) is seen to be concave for q only in the interval
�0, 1�. The modified expressions (9) and (10) satisfy the
H theorem when the density matrix obeys the Lindblad
equation as was shown in Ref. [22], as the original ones
do [21] where a kinetic equation was used. However, the
additivity property of S

�a�
q �r̂� is changed to

S
�a�
q � r̂A ≠ r̂B� � S

�a�
q �r̂A� 1 S

�a�
q � r̂B�

1 �q 2 1�S�a�
q � r̂A�S�a�

q � r̂B� . (12)

It is of interest to note that this relation has the
same structure of the Jackson basic number of A de-
fined by �A�q � �qA 2 1���q 2 1� in q-deformation the-
ory. The basic number of A 1 B satisfies the identity
�A 1 B�q � �A�q 1 �B�q 1 �q 2 1� �A�q�B�q, which has
a striking similarity to Eq. (12). To understand this simi-
larity better, we consider a quantity f�x� � 1�Tr� r̂x�.
Clearly, f�1� � 1. The von Neumann entropy is ex-
pressed as the rate of infinitesimal translation of the in-
dex x from x � 1: S1�r̂� � df�x��dxjx�1. On the other
hand, the modified Tsallis entropy is found to be given
by the Jackson q-differential: S

�a�
q �r̂� � Dqf�x�jx�1 �

�f�qx� 2 f�x����qx 2 x�jx�1. Convergence of S
�a�
q � r̂�

on S1�r̂� in the limit q ! 1 is due to the fact that the
Jackson q-differential becomes the ordinary differential in
such a limit. Equation (11) is a result arising from the q-
deformed Leibniz rule which the Jackson differential sat-
isfies: Dq�f�x�g�x�� � �Dqf�x��g�qx� 1 f�x� �Dqg�x��.
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These properties are similar to those noted in the case of
the original Tsallis entropy [23]. A physical interpretation
of this observation is that the system entropy has the scale
invariance with respect to the nonextensive parameter q.

We choose r̂0 to be the one which maximizes S
�a�
q

subject to the constraints of the normalized q-expectation
value of the energy Uq � Tr�r̂qĤ��cq� r̂� � �Ĥ�q and
the normalization of the density matrix. The resulting
density matrix is found to be

r̂0 �
1

Zq�b�
�1 2 �1 2 q�bcq�Ĥ 2 Uq��1��12q�, (13)

Zq�b� � Tr�1 2 �1 2 q�bcq�Ĥ 2 Uq��1��12q�, (14)

where the Lagrange multiplier b associated with the
constraint on the q-expectation value of the energy
defined above is identified with the inverse temperature.
The generalized partition function Zq�b� and the factor cq

satisfies the identity cq � �Zq�b��12q. Using Eq. (13) in
Eq. (9), we have the following maximum entropy relation:

K
�a�
q � r̂, r̂0� � S

�a�
q � r̂0� 2 S

�a�
q � r̂� 1 b�Ĥ 2 Uq�q $ 0 .

(15)

Thus, we see that Eq. (15) maintains the same form as
Eq. (3).

Now, taking r̂0 � r̂�a� and r̂ � r̂�a 1 da� in
Eq. (9) and carrying out the calculation as before up to
the second order in da, we find the following generalized
“metric” :

ds2
q � K

�a�
q � r̂, r̂0� 1 K

�a�
q �r̂0, r̂� � ds2

q,cl 1 ds2
q,qu ,

(16)

ds2
q,cl �

q�da�2P
a p

q
a �a�

X
a

�≠apa�a��2

pa�a�

� 4q�da�2�����≠a Lnqp21�2
a �a��2����q , (17)
ds2
q,qu �

2�da�2P
a p

q
a �a�

X
a,a0

j�a0�a� j �≠aja�a��j2pq
a �a� �Lnqp21

a0 �a� 2 Lnqp21
a �a��

� 2�da�2

****X
a0

j�a0�a� j �≠aja�a��j2�Lnqp21
a0 �a� 2 Lnqp21

a �a��

++++
q

, (18)
where ����Aa�pa�����q �
P

a pq
aAa�pa��

P
a pq

a . Thus, we
again see that Eq. (16) maintains the same form as
Eq. (6). The reason for the quotes on the generalized
metric is because as far as we are aware, the triangle
inequality is not yet proved for the symmetrized form
of the generalized q-KL entropy defined here. However,
our demonstration shows that a non-negative quadratic
differential form is in fact derived.

We have therefore established the two form invariances
of the generalization promised in the beginning of the
paper.

In conclusion, the form invariance requirement has
led us to the modifications of the q-KL entropy and
the original Tsallis entropy as in Eqs. (9) and (10).
Had we used the original forms of these quantities, i.e.,
without division by cq, the form invariances would not be
established.
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