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Vortices in the Wake of Rapid Bose-Einstein Condensation
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A second order phase transition induced by a rapid quench can inject far more topological defects
into the ordered phase than would appear in equilibrium. We use quantum kinetic theory to show
that this mechanism, originally postulated in the cosmological context, and analyzed so far only on the
mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein
condensates of simple topology, or of winding number in toroidal condensates.

PACS numbers: 03.75.Fi, 05.30.Jp, 11.30.Qc, 34.50.–s
An as yet unachieved goal of experiments on trapped
ultracold alkali gases [1–3] is the exhibition of a persis-
tent vortex. Superfluid vortices persist because there is
an energetic barrier between the metastable vortex state
and the nonrotating ground state, and so spinning up a
condensate is inherently difficult [4]. Here we propose a
different approach: cooling so quickly that the system is
trapped in the metastable state before reaching the ground
state. Our reasoning is based on the critical slowing down
of the dynamics of the order parameter in the vicinity
of a second order phase transition [5]: we consider time-
dependent Ginzburg-Landau theory (TDGL) adapted to the
Bose-Einstein condensation (BEC) case. The complex or-
der parameter c��r, t� obeys

t0
�c � b�h̄2�2M�21=2 1 m 2 Ljcj2�c , (1)

where b � �kBT �21, and t0 and L . 0 are phenomeno-
logical parameters. The thermodynamical variable m be-
haves near the critical point, in the case we consider, as

m �
3
2

�Tc 2 T � 1 O �Tc 2 T �2, (2)

where Tc is the critical temperature. The equilibration time
for long wavelengths is t � t0kBT�jmj. The system’s
disordered phase is described by m , 0, so that c � 0 is
a stable fixed point of (1). The ordered phase has m . 0,
with stable fixed points on the circle jcj2 � m�L, and the
phase u of c � jcjeiu a macroscopic variable.

A quench occurs if m changes with time from negative to
positive values. The divergence of the equilibration time
t at the critical point m � 0 is associated with critical
slowing down. Because of this critical slowing down,
�m�m must exceed 1�t in some neighborhood of the critical
point, and so there must be an epoch in which the system
is out of equilibrium. What are at the beginning of this
epoch mere fluctuations in the disordered phase can thus
pass unsuppressed by equilibration into the ordered phase,
to seed topologically nontrivial configurations of c . One
therefore expects persistent currents and vortices to form
spontaneously during a rapid quench [5].

The interval within which equilibration fails can be iden-
tified as jtj�t , 1. If we define the quench time scale tQ
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by letting bm � t�tQ (choosing t � 0 as the moment the
system crosses the critical point), this implies that the cru-
cial interval is 2t̂ , t , t̂, for t̂ �

p
tQt0 [5]. The corre-

lation length ĵ for fluctuations at time t � 2t̂ is then given
by h̄2��2Mĵ2� � m�2t̂�, which [assuming T �2t̂� � Tc]
implies that ĵ � lTc �tQ�t0�1�4, for lT � h̄�2MkBT �21�2

the thermal de Broglie wavelength. Taking ĵ as the typical
domain size surrounding a defect [6] implies that the vor-
tex line density should scale with t

21�2
Q [5]. In a toroidal

sample, independent random settings of the order parame-
ter phase, at different points around the torus, can produce
a net winding number, W � 1

2p

H �dl ? �=u, proportional to

t
21�8
Q [5]. This implies a superfluid velocity h̄ �=u�M [7].
Although ingenious experiments have recently been per-

formed to test this theory in liquid helium [8], and nu-
merical studies have supported its scaling predictions [9],
analogous results in a weakly interacting system, such
as a dilute trapped gas, would be even more instructive.
Assuming t0 is the scattering time, evaporative cooling
techniques yield �tQ�t0�1�4 of order one, and so ĵ is
essentially lTc . For atoms at several hundred nK, this
means ĵ � 100 nm, smaller than current condensates. As
simulations show [9], this is actually a generously low
lower bound on the distance between vortex lines given by
TDGL theory, but it does indicate that spontaneous vortic-
ity should be within experimental reach. Considering this
intriguing prospect raises an obvious question: is TDGL
actually relevant to dilute Bose gases in traps?

To assess TDGL in this new domain, therefore, we
consider a trapped dilute Bose gas with the Hamiltonian

Ĥ �
h̄2

2M

Z
d3r �j �=ĉj2 1 U��r�ĉyĉ 1 4paĉy2ĉ2� ,

(3)

where ĉ��r� annihilates a boson at position �r , U gives
the trap potential, and a is the s-wave scattering length.
As always, ĉ��r� �

P
k uk��r�ĉk defines a decomposition

of the system into orthogonal modes described by single-
particle wave functions uk . In the earliest stages of con-
densation, it is sufficient to take the single-particle energy
eigenstates as defining the normal modes of the gas.
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We now construct a quantum kinetic theory (QKT), by
treating the lowest energy modes of the trap, up to some
energy ER , as an open quantum system (the “condensate
band”), interacting via two-particle s-wave scattering with
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the higher modes (the “reservoir band”), which are traced
over [10]. In the earliest stages of condensation, before
nonlinear interactions within the condensate band become
important, this leads to a master equation:
�̂r �
X
k

µ
Ek

ih̄
�n̂k , r̂� 1 Gkebm

∑
eb�Ek2m�âkrâ

y
k 1 â

y
k râk 2

1 1 eb�Ek2m�

2
�n̂kr̂ 1 r̂n̂k� 2 r̂

∏∂
, (4)
where Ek are the energies of the normal modes. The Gk

are scattering rates, which will generally be of the order of
the Boltzmann scattering rate. We actually expect the k
dependence of the Gk to be weak as long as the temperature
is much larger than the trap level spacing, so we will
hereafter replace Gk with G0, which will play exactly the
same role as 1�t0 did in TDGL. The non-Hamiltonian part
of (4) is due to collisions which transfer particles between
condensate and reservoir bands.

An ansatz which solves (4) is furnished by

r̂�t� �
Y

k

1
n̄k 1 1

X
nk

µ
n̄k

n̄k 1 1

∂nk

jnk� �nkj , (5)

where n̄k�t� � Tr�r̂n̂k�. By (4), the n̄k�t� evolve under

�̄nk � G0ebm�1 1 �1 2 eb�Ek2m��n̄k� . (6)

This equation may be integrated for general G0�t�, b�t�,
m�t�. Near the critical point, however, we can impose
b�t� �m�t� 2 Ek� � �t 2 qk��tQ , defining tQ as well as
the bias time scales qk . The n̄k�t� that result, from
the equilibrium initial values n̄k�ti� � �eb�ti� �Ek2m�ti�� 2

1�21, are incomplete gamma functions; they depart sig-
nificantly from their equilibrium values after t 2 qk 	
2

p
tQ�G0 � 2t̂. Past these points, the n̄k lag below their

equilibrium values. This clarifies the effect of the critical
slowing down: as Bose enhancement turns on, the rates of
scattering into the condensate increase; but the numbers of
particles required by equilibrium increase faster still.

Thereafter, we approximate �1 2 eb�Ek2m�� � �t 2

qk��tQ and match to equilibrium at early times, to get

n̄k�t� � G0e�1�2t̂2� �t2qk �2
Z t2qk

2`
dt0 e2�1�2t̂2�t0 2

. (7)

For times after t 2 qk 	 t̂, each n̄k grows explosively,
because the atomic scattering analog of stimulated emis-
sion into the kth mode is turning on strongly: n̄k is be-
coming large enough that the term proportional to it on
the right-hand side of (6) dominates the other term. Bose-
enhanced scattering then enables the mode to begin a very
rapid “whiplash” to catch up with equilibrium. So the in-
terval qk 2 t̂ , t , qk 1 t̂ is indeed a transition zone
between equilibrium above Tc and the onset of coherent
processes below Tc. It is obvious that, for a higher energy
mode to have any significant chance of competing success-
fully for particles with the lowest mode, it cannot afford to
begin explosive growth much later than the lowest mode.
This implies that qk , t̂, or bEk , �G0tQ�21�2, limits the
range of significantly competitive modes. Since in bulk or
in a toroidal trap we have Ek ~ k2, this gives

ĵ � k̂21 � h̄�2MkBTc�21�2�G0tQ�1�4, (8)

which is the same conclusion reached by TDGL above.
In the toroidal trap, we can consider the Fourier modes

in the coherent state basis j
ck��. Density matrices of the
form (5) can be taken to describe mixtures of coherent
states, with probabilities proportional to exp 2

P
k

1
n̄k
jckj

2.
While W is not a simple function of ck , there are as many
independent random phases as non-negligible n̄k�t̂�, so we
expect winding numbers of order �k̂R�1�2, for R the radius
of the torus [5].

Thus far QKT and TDGL agree: for sufficiently rapid
quenches the probability of forming a small “seed” of
condensate with nonzero vorticity is of order one. But
since superfluid currents become metastable only above
a threshold density, not all of this vorticity will survive
as the condensate grows. Predicting how much of it will
be lost requires a quantum kinetic theory of competing
protocondensates; no such theory as yet exists. We present
here a simple toy model, within which we can compare
TDGL and QKT beyond the linear regime.

The toy model replaces the condensate band of low en-
ergy modes with a mere two modes, having two different
angular momenta. Because the self-Hamiltonian for this
two-mode system must conserve both particle number and
angular momentum, it must conserve separately the num-
bers of particles in both modes:

Ĥ � E�n̂1 1 �2Nc�21�n̂2
0 1 n̂2

1 1 4n̂1n̂0�� . (9)

The Bose enhancement of intermode repulsion (the factor
of 4 instead of 2 in the n̂0n̂1 term, the best case value
obtained when ju0j

2 and ju1j
2 overlap completely) makes

the state with all particles in the 1 mode a local minimum
of the energy for fixed n0 1 n1 . �Nc 1 1�. For two
lowest modes of a typical oblate magneto-optical trap, we
have bE of order 1022; for proposed toroidal traps with
perimeter of order 1022 cm, at similar temperatures, bE
could be as low as 1025. (Rotating the gas before con-
densation could even favor rotating states over the ground
state.) The experimental range of Nc is around 100 for
compact traps, but as low as 1 for the torus.

We also assume interactions between both condensate
modes and the quasicontinuum of reservoir modes, of the
form implied by the Hamiltonian (3). Upon tracing over
the dilute gas reservoir, we obtain a master equation of
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more complicated form than (4), which includes saturation effects, as well as scattering of reservoir atoms off the
condensate (with no net change in the condensate number). We will need only the equation’s diagonal part:

�pn0,n1 � 2G�t� �Rn0,n1 2 Rn021,n1 1 Sn0,n1 2 Sn0,n121� 2 G̃�t� �Tn011,n1 2 Tn0,n111� ,

Rn0,n1 � �n0 1 1� �ebmpn0,n1 2 e�bE�Nc� �n012n1�pn011,n1� ,

Sn0,n1 � �n1 1 1� �ebmpn0,n1 2 e�bE�Nc� �Nc12n01n1�pn0,n111� ,

Tn0,n1 � n0n1e21�2�bE�Nc� jNc1n02n1j�e1�2�bE�Nc� �Nc1n02n1�pn021,n1 2 e21�2�bE�Nc� �Nc1n02n1�pn0,n121� ,

(10)
where G�t� and G̃�t� are again scattering rates (for scat-
tering into/out of the condensate, and off the condensate,
respectively) which may be computed for any specific gas
and trap. We will hereafter assume G̃ � bEG, which is
accurate for simple trap configurations when the tempera-
ture is much larger than the trap level spacing.

Equation (10) provides a complete description of con-
densation in the toy model, including initial seeding from
fluctuations, coherent growth, relaxation into metastable
states, and eventual equilibration by thermal barrier cross-
ing. For present purposes we merely extract from it an
equation of motion for n0 and n1, by taking n0 ! Nx
and n1 ! Ny for continuous x and y and N of order
�bE�21. Expanding the finite differences in (10) in pow-
ers of derivatives with respect to x and y, one obtains a
Fokker-Planck-like equation, the Liouville terms of which
describe a flow along deterministic trajectories in �x, y�
space. Dropping higher order terms in 1�N (since these
are significant only at small n0, n1, when diffusion domi-
nates systematic evolution but we are able to use the linear
analysis described above), these trajectories obey
�n0 � Gn0

∑
ebm 2 e�bE�Nc� �n012n1� 1 2bEn1e2�bE�2Nc� jNc1n02n1j sinh

bE
2Nc

�Nc 1 n0 2 n1�
∏

,

�n1 � Gn1

∑
ebm 2 e�bE�Nc� �Nc1n112n0� 2 2bEn0e2�bE�2Nc� jNc1n02n1j sinh

bE
2Nc

�Nc 1 n0 2 n1�
∏

.

(11)
While this approximation of the master equation offers
the obvious comparison with TDGL, it is of course a bold
truncation of the physics, since it ignores diffusion in nj .
Such diffusion can in fact be analyzed by well established
methods; if it dominates the systematic evolution described
in (11), however, it leads to nucleation of the metastable
state by thermal barrier crossing, rather than by the critical
slowing down mechanism on which we focus here. We
therefore consider the case in which diffusion is only sig-
nificant during the early epoch before t̂, so that the linear
analysis described above can be used to generate a distri-
bution of initial data at t̂, which will then flow under (11).
A fuller investigation of the master equation confirms that
this case obtains for fast quenches and small biases: with
GtQ � 10 diffusion is weak for bE � 1022, and clearly
insignificant for bE � 1023.

Having established that the systematic evolution of (11)
provides a good description, after t̂, of a fast quench in the
toy model, we can now compare it to the TDGL evolution.
When n0 1 2n1 and Nc 1 n1 1 2n0 are both close to
Ncm�E, or for low enough particle numbers, we may
replace nj ! jcjj

2 in the first two terms in each equation
of (11) to obtain a TDGL equation, in the sense that �cj is
set equal to the variation of a Ginzburg-Landau effective
potential with respect to c

�
j . But the last term in each

equation is not of Ginzburg-Landau form (it does not even
involve m). These non-GL terms conserve n0 1 n1, and
describe doubly Bose-enhanced dissipation due to scatter-
ing of reservoir particles off the condensate. They turn out
to imply that the system equilibrates in energy faster than
it equilibrates in particle number.

Representative solutions to (11) are shown in Fig. 1, to-
gether with the jcjj

2 given by the TDGL theory formed
by keeping only the first two terms of each equation in
(11) and expanding the exponentials to first order only. It
is clear that, for sufficiently fast quenches, the two theo-
ries accord quite well, but that for slower quenches TDGL

FIG. 1. Trajectories from QKT (solid) and TDGL (dotted);
heavy dashed line is threshold for metastability of mode
1. Initial times are t̂; quench is bm � tanh�t�tQ�, b �
bcetanh�t�tQ �. Parameters are Nc � 100, and (a) GtQ � 10,
bcE � 0.01; (b) GtQ � 100, bcE � 0.05. The two theories
agree better for the faster quench, simply because the intermode
scattering neglected in TDGL has less time to act before
metastability is attained.
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significantly overestimates the probability of reaching the
metastable state. If our two modes are taken to be dif-
ferent Fourier modes in a toroidal trap, the vorticity of a
state is simply the vorticity of the more populated mode,
so that the line n0 � n1 is the border between vorticities;
all initial points in Fig. 1 are above this line. So not even
TDGL evolution conserves vorticity, but the QKT evolu-
tion changes it more easily, especially for slower quenches.

The major addition to TDGL coming from QKT is
the doubly Bose-enhanced scattering of particles between
modes of the condensate band by reservoir particles. Al-
though phase space factors suppress these processes with a
factor of order bE (it is unlikely for a slow particle to re-
main slow after being hit by a fast particle), they become
more important as the condensate grows. Their signifi-
cance even calls into question our Eq. (4), from which we
recovered the TDGL predictions for very young conden-
sates, because it does not include them.

Adding intermode scattering to (4) makes an intractable
operator equation; but we can obtain from it a simpler set
of equations for n̄k�t�, by setting njnk ! n̄j n̄k . With the
new terms, this is now only an approximation (and one
that cannot describe multiple peaks in the probability dis-
tribution of the nk , which is our whole question); but it
allows quantitative assessment of the new terms’ impor-
tance. These equations for the n̄k have recently been de-
rived by Gardiner et al. [11], for a harmonic trap. From
them one can see that the relative importance of inter-
mode scattering declines for a smaller condensate band:
if ER � hkBT �GtQ�21�2, then until times of order t̂ the
contribution to n̄k from intermode scattering is a fraction
of order h2 times that given by our (4). This implies that,
although one might have to lower the TDGL estimate of
k̂ by a factor of order unity, (4) indeed describes well the
earliest stages of competition for the condensate among
eligible modes.

There is, however, a significant consequence of thus
lowering ER: the lower portion of the reservoir will no
longer remain in equilibrium as it cools. Nevertheless, nu-
merically solving the equations of Ref. [11], with various
ER up to kBT and with our time-dependent m�t�, shows
that until times of order t̂ all the n̄k�t� may be reproduced
to within a few percent by neglecting intermode scattering,
but increasing (“renormalizing”) both G and tQ , by factors
ranging between 1.5 and 4. These rescalings reflect the
two new phenomena at the bottom of the reservoir: super-
Boltzmannian population enhances scattering, and critical
slowing down slows the quench. Our Eq. (4) may thus be
maintained, but the effective dimensionless quench time
1710
G0tQ probably cannot be less than around ten. Whether
this effect is ascribed to intermode scattering in the conden-
sate band or to the modified state of the reservoir depends
on the (unphysical) choice of ER .

While the extension of quantum kinetic theory beyond
toy models, to realistic descriptions of topological de-
fect formation, will obviously require further study, the
prospects for experimental realization of spontaneous de-
fects are very encouraging. Estimates from TDGL suggest
vortices may already be forming (not necessarily surviv-
ing) in harmonic traps. It would be of great interest to
carry out BEC formation experiments such as [12] in traps
which are sufficiently anharmonic to retain vortex lines and
to allow for their detection. Ideal for these purposes is the
torus, in which W � 10 might be typical, and here dif-
fusive nucleation gives a lower bound of typical W � 1.
With 106 atoms, even this has an equilibrium probability
of order e210.
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