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Comment on “Diffusion of Ionic Particles in
Charged Disordered Media”

In a recent Letter, Mehrabi and Sahimi discuss motion
of ions in charged disordered media, presenting a variety
of results obtained by Monte Carlo simulation on a lattice
[1]. Their observations of mean square displacements
R2�t� suggest that this model exhibits anomalous diffusion
in three dimensions,

R2�t� � �const�t12d as t ! ` . (1)

They observe the same behavior in one and two dimen-
sions, but do not present results for d. Mehrabi and
Sahimi also make the physically surprising claim that a
suitably defined diffusivity can actually increase with in-
creasing disorder strength (see Fig. 3 of Ref. [1]). Exact
bounds, renormalization group calculations, and previous
numerical simulations are inconsistent with these results
in three dimensions.

At low concentrations of mobile ions, the Green func-
tion for a diffusing ion should obey the diffusion equation,

≠cy�r, t�
≠t

� D0=2cy 1 bD0= ? �cy=y�r�� . (2)

Here cy is the Green function of a single ion in a given
realization of the quenched random potential y, D0 is
the “bare,” short-time diffusivity, and b is the inverse
temperature. The mean square displacement is given by
R2

y�t� �
R

ddrjrj2cy�r, t�. The observable mean square
displacement is given by an average over all realiza-
tions of the disorder: R2�t� � �R2

y�t��. The effective dif-
fusion coefficient is defined in d dimensions by D �
limt!` R2�t���2dt�.

Mehrabi and Sahimi model the disorder by a quenched
Gaussian random potential field. The statistics of this
potential field are chosen so that they obey bulk
charge neutrality: x̂yy�k� � g��k2�k2 1 k2��. Here
the potential-potential correlation function is xyy�r� �
�y�0�y�r��, k is an inverse correlation length, and g is a
measure of the density of defects. The Fourier transform in
d dimensions is given by f̂�k� �

R
ddr f�r� exp�ik ? r�.

The single-ion, random diffusion model is a well-
studied one in statistical physics, and a variety of exact
results are known. First, there is an exact bound for the
diffusivity in this system in any dimension [2],

D
D0

$ exp�2b2xyy�0�� . (3)

Calculating this bound in three dimensions, one finds
D�D0 $ exp�2b2g��4pk��. This result implies that the
motion is diffusive in three dimensions, i.e., D . 0. The
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motion is also diffusive at finite ion concentrations, since
the dynamical exponent is 2 [3]. Therefore, the motion
should be asymptotically diffusive in three dimensions.
Indeed, previous careful simulations by Dean, Drum-
mond, and Horgan on related models have confirmed the
bound [4]. Moreover, these simulations have shown that
Deem and Chandler’s single-ion prediction [5]

D
D0

� exp�2b2xyy�0��d� (4)

is accurate to at least moderate disorder strength. In fact,
this equation is correct to second order in b2xyy�0� in all
dimensions and is exact in one dimension. Note that, as
expected physically, the diffusion constant decreases with
increasing disorder strength.

The situation is more interesting in two dimensions,
where anomalous diffusion can occur [the bound in
Eq. (3) vanishes, and the predicted diffusivity in Eq. (4)
is zero]. Indeed, field-theoretic treatments have shown
that the exponent in Eq. (1) is continuously variable
and is given exactly by d � 1��1 1 8pk2��b2g�� [6].
This scaling has been confirmed by numerical simulations
[7]. At finite ion concentrations, the anomalous diffusion
persists at high temperature [3], although the mobile ions
may partially screen the disorder. A Kosterlitz-Thouless
transition can occur at low temperature [3].
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