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Numerical ground state calculations are used to study four models with quenched disorder in finite
samples with free boundary conditions. Extrapolation to the infinite volume limit indicates that the
configurations in “windows” of fixed size converge to a unique configuration, up to global symmetries.
The scaling of this convergence is consistent with calculations based on the fractal dimension of domain
walls. These results provide strong evidence for the “two-state” picture of the low temperature behavior
of these models. Convergence in three-dimensional systems can require relatively large windows.

PACS numbers: 75.10.Nr, 02.60.Pn, 02.70.Lq, 75.50.Lk
The structure of the thermodynamic set of states of a
system in statistical mechanics is studied formally through
the infinite volume limits of correlation functions [1]. If a
nested sequence of systems with given Hamiltonian and
boundary conditions has spin correlation functions that
converge in the infinite volume limit, a thermodynamic
state can be defined. For example, in a ferromagnet with
fixed, positive fields at the boundary, the single-spin cor-
relation function converges to a positive value, defining
an “up” state. For disordered spin systems, the question
of the number of thermodynamic states is a subtle one
[2–7]. Whether there are many thermodynamic states in
some sense [8] or a small number of states related by
simple global symmetries [3] (e.g., two spin-flip related
states in an Ising spin glass) has been a most controver-
sial point for low-dimensional systems. Part of this debate
has been over what are the most useful methods for deter-
mining the structure of thermodynamic states, spin over-
laps P�q� [8–10] or correlation functions in subsystems
[3,5], and it is unclear whether Monte Carlo simulations
at finite temperature can be used to study large enough
systems [11].

This Letter describes the results of numerical compu-
tations which address the structure of states in disordered
systems in the thermodynamic limit, at zero temperature.
Two two-dimensional models, an Ising spin glass and a
charge density wave (CDW) model (also referred to here
as an elastic medium model), and two three-dimensional
models, a CDW model and a dimer matching model that
is equivalent to nonintersecting lines in a random medium
(similar to vortex lines in type-II superconductors), were
studied. The ground states were computed for a sequence
of free boundary conditions and the configurations in
a fixed finite subsystem (or “window”) were compared.
This study is a particular instance of the numerical ap-
proach suggested by Newman and Stein [6], who have
presented detailed arguments that the existence of many
states, as in the Parisi solution [8] of the mean field spin
glass, gives rise to “chaotic size dependence” [4]. The
principle result derived from the simulations presented
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here is that the window configurations converge to a
single fixed configuration with probability one. These
computations strongly support the picture of a small num-
ber of ground states related by global symmetries, con-
sistent with the droplet model [3,12]. The details of the
convergence to a single fixed configuration as the bound-
ary grows has a scaling behavior which is well described
by a simple picture of domain walls.

The 2D spin glass model (SG) studied has spins si �
61 defined at lattice points i, with Edwards-Anderson
Hamiltonian [13] HSG � 2

P
�ij� Jijsisj , where Jij is cho-

sen independently from a Gaussian distribution for all near-
est neighbor bonds �ij�. This model is believed to be
paramagnetic at finite temperature, but is a spin glass at
T � 0; minimal energy large scale excitations of size L
have an energy E�L� � LuSG with uSG � 20.27 [14]. The
discretized CDW or elastic medium model in two dimen-
sions (E2) studied here is also equivalent to a disordered
substrate model or vortex lines in two dimensions pinned
by quenched disorder [15,16]. The configurations in this
model are defined by complete dimer coverings of a hexag-
onal lattice, with the Hamiltonian being the sum over cov-
ered dimers d of dimer weights wd , HE2 �

P
d wd , where

the wd are chosen for each bond from a uniform distribu-
tion. In mean field replica calculations, matching problems
are found to have replica symmetric solutions [17,18]. A
mapping of the dimer model to a discrete height represen-
tation h can be made [19]; the variable h corresponds to the
scalar phase displacements in CDW models. This model
is believed [15] to have a finite temperature phase tran-
sition, with the height-height correlations �h�r�h�0�� be-
having as �ln�r� in the high-T phase and as �ln2�r� in
the low-T phase. In this model, uE2 � 0 �E�L� � const�.
The model E2 can be extended to three dimensions in
two distinct ways; both are both studied here. One ex-
tension is that of dimer covering (matching) on a cubic
lattice (M3), which can be mapped to a set of vortex lines
with hard-core repulsion [16,20]. It has a Hamiltonian
identical to that for E2, with the covering dimers a sub-
set of the edges in a simple cubic lattice. The other 3D
© 1999 The American Physical Society
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model is the three-dimensional CDW or elastic medium
model (E3) [21]; in the continuum limit, uE3 � 1 (con-
sistent with numerics in Ref. [21]). The low temperature
phase of the elastic medium models has been studied us-
ing both [22] renormalization group and replica symmetry
breaking techniques, which are usually, though not exclu-
sively, interpreted physically as describing systems with
few states or many states, respectively.

These models of disordered systems were studied using
polynomial-time combinatorial optimization algorithms
[16,23,24]. The spin glass was studied on a triangular
lattice, using the method developed by Barahona [24],
rather than the string method which is often used [25].
The minimum weighted matching algorithm [26] used
for the implementation of Barahona’s algorithm was the
algorithm described in Ref. [27]. Calculations were made
for at least 103 samples of up to 5122 spins. The model
E2 can be mapped to a bipartite matching problem [16,26]
and was solved using the algorithm of Ref. [28] for at
least 103 samples of sizes up to 10242 sites. The same
algorithm was used for model M3, 3D matching, with
up to 1283 sites with at least 103 samples, while the
push-relabel maximum flow algorithm as implemented
in Ref. [28] was used to study the 3D elastic medium
model E3 (up to 643 sites with at least 103 samples).
The algorithms used determine ground states up to global
symmetry transformations. For example, in the spin glass,
unsatisfied bonds (bonds with Jijsisj , 0) are calculated,
rather than si . Configurations related by symmetries are
considered identical here, so that a “two-state” picture
for spin glasses naturally appears as a single state in the
computations [29].

The effect of system size was studied extensively for
free boundary conditions. The disorder realizations for
each sample Sa

L of linear size L (with Ld spins or
sites) were generated so that Sa

L was a subsystem of
a given infinite volume sample a. Two finite samples
Sa

L and Sa
L0 had the same quenched disorder in their

intersection. Each finite sample was centered at an origin
C, so that a sequence of samples Sa

L , Sa
L0 , Sa

L00 , . . . , with
L , L0 , L00 , . . . , gives a nested set of square or cubic
samples centered about P. The L ! ` limit could then
be numerically studied for a number of infinite samples a.
The free boundary conditions were assumed to be typical
for the models SG and M3. In the elastic models, free
boundary conditions give ground states with lower energy
than boundary conditions that would introduce a uniform
strain in the elastic models in the infinite volume limit;
such uniform strain states are not considered here.

The configuration differences for samples of different
sizes L , L0 were computed by comparing the exact
ground states in the volumes of size Ld , where Sa

L and Sa
L0

overlapped. Spin glass ground states in two dimensions
were compared by finding the differences in unsatisfied
bonds. An example of such a ground state comparison
by bond overlap is shown in Fig. 1. For the models
L’

L

w

FIG. 1. Example of expansion of boundary conditions for the
two-dimensional spin glass. The ground state for L0 � 120 and
L � 80 subsystems of a single infinite sample are compared.
The solid lines inside the L � 80 region (dashed box) indicate
the difference (relative domain walls) in the two ground states
in their common area. The solid box indicates a window of size
w � 40. In this example, the expansion of boundary conditions
changes the ground state inside the window by the introduction
of a domain wall that crosses the window. As can be seen,
domain walls exist near the edge of the L � 80 subsystem;
most do not propagate into the middle of the region.

with dimer matchings (E2 and M3), the configurations
are compared by finding the symmetric difference of
the dimer sets in the common volume. The natural
comparison for the height configurations for the model E3
is to determine where the gradients of the heights in the
intersection volume differ.

The primary quantity of interest that was computed
was the (sampled) probability that a change in boundary
conditions resulted in any change in the ground state
configuration in a window of size w centered at C. The
probability P�L0, L, w� is defined as the probability that
the configuration in the window region changes as the
system size is increased from L to L0, that is, that the
ground state configuration for Sa

L0 differs from that for Sa
L

in the volume of size w centered at C. This quantity was
estimated by sampling over a large number of samples
a for various L0, L, and w [30]. This measurement is
sensitive to all gauge invariant spin correlation functions
in the window volume.

A plot of the data for P�L0, L, w�, as a function of w
for various L0 and L, is shown in Fig. 2 for the spin glass.
Assuming scale invariance, P should be a function of the
two ratios L0	L and L	w. The data is consistent with
this hypothesis, for large values of w and L. For fixed
L	w, P�L0, L, w� approaches a constant for large w or
large L. Note that to within error estimates, P�L0, L, w�
is independent of L0 for L0	L � 2, 4, 8: the probability of
change in a finite window is approximately independent of
the magnitude of expansion in the boundary, for L0 $ 2L
(P does decrease noticeably as L0 & L.) In addition, for
fixed w, P�L0, L, w� decreases approximately as a power
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FIG. 2. A plot of the probability P�L0, L, w� that an expansion
in boundary conditions from L to L0 will change the configura-
tion in a window of size w embedded in the original system of
size L, for the two-dimensional spin glass. Error bars indicate
1s statistical uncertainties. For large values of L	w, P con-
verges to a constant. For fixed w, P decreases as a power law
in L (by the even spacing of the data points at fixed w). Note
that, for the values of L0	L shown, P is independent of L0	L.

law in L (by the even vertical spacing of the data points
for P ø 1). The data strongly suggest, by extrapolation
to larger values of L for fixed w, that the probability of
changing the configuration in a window of size w goes
to zero for L0	L ! ` as L ! `, implying convergence
to a unique thermodynamic ground state (up to global
symmetries).

The data can be explained by simple assumptions about
the convergence of the configurations as L ! ` and the
properties of domain walls or defect lines. For the spin
glass model, induced domain walls are lines where the
bonds change from satisfied to unsatisfied or vice versa.
In models which are represented by a matching (E2 and
M3), defects are also line objects and are composed
of bonds where the dimer covering changes. In model
E3, the induced walls are surfaces where the height
gradient changes. Defect lines have fractal dimension
dSG

f � 1.27�1� for model SG and dE2
f � 1.25�1� for

model E2 [14,16,31]. For the 3D elastic medium, a
shift in boundary conditions introduces a domain wall
of dimension dE3

f � 2.60�5� [21], while localized string
defects were computed during the course of this work
to have fractal dimension of dM3

f � 1.65�4� in the 3D
matching model. If the fractal dimension of the defects
is large enough �df . d	2� that no more than O�1�
defects of size L can coexist in the volume Ld , the
expected number of defects of linear size L introduced
upon expansion to size L0 is bounded above by a constant.
Whether boundary changes do induce a number of defects
that saturate this bound is less clear a priori. For the
models where u # 0, finite changes at the boundary are
likely to induce as many defects as possible, as the large
scale defect cost is comparable to the cost of local changes
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at the boundary. The probability that a line or surface
will intersect a window of size w is then the ratio of the
number of volumes of size wd that intersect the defect to
the number of areas of size wd in the area Ld , giving the
form

P�L0, L, w� � c�L0	L� �L	w�2k , (1)

for large L	w, with k � d 2 df by the supposition of
a single dominant defect and, by these numerical results,
the coefficient function c�L0	L� quickly converges to a
constant value for L0	L $ 2. This form can be checked
by plotting P as a function of L	w and comparing with
a line of slope df 2 d, as shown in Fig. 3. The match
between this prediction and the data in d � 2 is quite
good; a two-parameter fit [varying c�`� and k] gives
exponents that agree with k � d 2 df to within 0.05 for
models SG and E2. Differences of this order are within
statistical fluctuations and apparent finite size effects. In
addition, numerical study of a number of configurations
for three values of L (e.g., Sa

L , Sa
L0 , Sa

�L0�2	L) for the d � 2
spin glass suggests that the location of L-scale defects in a
volume is nearly independent of L0, giving more support
to the conclusion that there is convergence to a unique
state in these models.

The 3D results also indicate convergence to a single
state, as P�L	w� ! 0 for L	w ! `. The quantitative fits
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FIG. 3. (a) Data for the d � 2 spin glass scaled by plotting
P�L0, L, w� vs L	w. For clarity, only data for L0	L � 2 is
shown. The straight line indicates the slope predicted by k �
d 2 df � 0.73. The data apparently converge to this form as
w ! `. (b) Scaled data for the d � 2 CDW or elastic medium
model (E2); the straight line again indicates k � d 2 df , with
k � 0.75. (c) A scaled plot of P�2L, L, w� for the 3D elastic
medium (E3); the straight line has slope df 2 d � 20.40,
which approximately parallels the data for fixed w. (d) A
scaled plot of P�2L, L, w� for the 3D dimer matching problem
(M3); the straight line has a slope 2k � 21.35.
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are also consistent with a defect picture, but have a larger
uncertainty. For the 3D elastic medium, the data are
consistent with P � �L	w�dE3

f 2d for fixed w, as shown
in Fig. 3(c), though larger sample sizes would be useful.
For the problem M3, the behavior P � �L	w�21.35, with
k � d 2 df , can be fit to the largest L	w values, though
only over a small range. Note that P . 0.9 for L	w # 4
and P . 0.5 for L	w � 8. Under an expansion L0	L �
2, the configuration in a window usually changes for
L	w , 8. Such change in small systems mimics the
predictions of a many-state picture.

In summary, the infinite-volume limit for four model
disordered systems was studied numerically by computing
ground state configurations in fixed volumes embedded
in systems of successively larger sizes. Strong evidence
was found for convergence to a unique state (up to
global symmetries), even in cases where u # 0. The
convergence to a unique state in d � 2 can be understood
in detail by estimating the chance of a defect wall
intersecting a given area upon a boundary change. The
3D model results are more qualitative: while it appears
that the system converges to a unique state, the ratio of
scales (L0	L, L	w) required is larger, so that systems
of size L . 50 are needed. Polynomial ground state
algorithms are not available for the 3D spin glass and this
system is not directly addressed here, but these results
suggest that one should be cautious in interpreting finite
temperature Monte Carlo results [9] and ground state
calculations [32] in small systems.
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