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The well-defined delocalization modes of JAF and 2JAF , where JAF is the antiferromagnetic exchange
integral in a spin pair, are obtained in the S � 1�2 alternating chains for �a�JAF �2 ø 1 at T � `

in terms of the continued fraction formalism with the recurrence relations method. These modes
correspond to the single and the double singlet-to-triplet local excitations, respectively. Dynamically
these very short-ranged and very weak correlations survive at T � `. We raise the possibility of
observing these modes in neutron and Raman scattering at high temperatures, kBT ¿ JAF .

PACS numbers: 75.10.Jm, 05.70.Ln, 75.40.Gb
Since the Haldane conjectures [1,2] and the discovery of
the inorganic spin-Peierls compound CuGeO3 [3], the S �
1�2 alternating chains have attracted again the attention
of theoretical and experimental workers. Experimental
results on these spin chains have reported on magnetic
susceptibility, specific heat, and neutron scattering data
[3–8]. Although a number of studies have been made
on, e.g., a gap formation and static quantities [4,9–14],
little is known about the dynamics especially theoretically
[15–17].

The purpose of this Letter is to show the emergence of
well-defined delocalization modes in the S � 1�2 alter-
nating chains at T � ` and to raise the possibility of ob-
serving the modes in neutron and Raman scattering at high
temperatures. This study also opens the door to the dy-
namics with a new viewpoint. That is, high temperature
dynamics can be distinguished in systems where, e.g., how
dimers are geometrically configurated in the ground state.
Although spins are uncorrelated at T � `, dynamics un-
like thermodynamics may include the characteristic modes
of a system.

The continued fraction formalism [18] has developed
from the generalized Langevin equation [19] and applied
to the linear response theory [20], as

a0�z� �
1

z1

D1

z1

D2

z1

D3

z1
. . . (1)

for the Laplace transform a0�z� �
R

`
0 dt e2zta0�t� of

a0�t� � ���A�t�, A��� �A, A�21 (2)

for a dynamical variable A, where the Kubo scalar product
is ���A�t�, A��� � 1�b

Rb
0 �A�t 2 ih̄l�Ay� dl 2 �A�t�� �Ay�

with �O� � Tr�Oe2bH��Tr�e2bH� and b � 1�kBT . The
anomalous ESR spectra [21] was explained using Eq. (1),
but there were some difficulties to obtain the continued
fraction coefficients 	Dn
. Later Lee [22,23] obtained a
more simplified method of calculating a d-dimensional
	Dn
 as

fn11 � iLfn 1 Dnfn21 , (3)

Dn � � fn, fy
n � � fn21, f

y
n21�21 (4)

with iLO � �i�h̄� �H, O�2, f0 � A. The boundary
conditions are D0 � 1 and f21 � 0. We can reformulate
0031-9007�99�83(8)�1668(4)$15.00
A�t� �
Pd21

n�0 an�t�fn with time-dependent c-number
functions including Eq. (2). Equation (3) helps classify
the excitation modes and Eq. (4) determines the excitation
energy. Some issues such as electron gas [24,25], spin
system [26–32], and strongly correlated system [33,34]
have been discussed using Eqs. (3) and (4).

The Hamiltonian of the S � 1�2 alternating chains is

H � JAF

X
i

Si,1 ? Si,2 2 a
X

i

Si21,2 ? Si,1 , (5)

where a vector Si,1�2� denotes a S � 1�2 operator at the
left (right) side in a molecule on a site i [35]. The on-
site antiferromagnetic (AF) exchange integral JAF takes
the energy unit and a coupling constant a controls the
class and strength of alternation. Equation (5) describes
the AF-ferromagnetic (AF-F) alternating chain for a . 0
and the AF-AF alternating one for a , 0. The system
with S � 1 corresponds to that for a � 1`.

We investigate the dynamics of a sum of the spin z
component at both sides on a certain site j,

A � Sz
j,1 1 Sz

j,2 , (6)

at T � `. That is, when the supply of energy obtained
from a small external field is suddenly turned off at a
time t � 0, how does the energy delocalize from a site
j? Although each spin thermally fluctuates at T � `,
dynamics different from thermodynamics includes the
characteristic modes. Our interest is in the identification
of these characteristic delocalization modes. Here we
note that the Kubo scalar product at T � ` becomes the
correlation function and that its evaluation can be done by
taking the trace of products and neglecting fluctuations.
We thus have � f0, f0� � 2a with a � S�S 1 1�h̄2�3
because the trace of the cross terms vanishes. We classify
Eq. (5) into three models as shown below.

We begin with the Ising model with Si,1�2� � Sx
i,1�2�.

Using Eq. (3), we have f1 � f0
1 2 afa

1 with f0
1 �

Sx
j,1S

y
j,2 1 S

y
j,1Sx

j,2 and fa
1 � Sx

j21,2S
y
j,1 1 S

y
j,2Sx

j11,1,
which leads to � f1, f1� � 2a2�1 1 a2�. It is clear that
D1 � a�1 1 a2� from Eq. (4). By successive use of
Eqs. (3) and (4), we obtain f2 � 2a�Sx

j21,2Sz
j,1Sx

j,2 1

Sx
j,1Sz

j,2Sx
j11,1�, f3 � 2aa�1 2 a2� �af0

1 1 fa
1 ���1 1 a2�
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and f4 � 0, which lead to D2 � 4aa2��1 1 a2�,
D3 � a�1 2 a2�2��1 1 a2� and D4 � 0, respectively.
This is equivalent to the fact that the Hilbert space of A
given by Eq. (6) is spanned by 	 fn#3
 only and that the
excitation localized on a site j does not spread but oscil-
lates within a 3-spin alignment. This finite d-dimensional
Hilbert space also persists at finite temperatures.

The oscillation mode is obtained by inserting the 	Dn

into Eq. (1) and putting z � 2iv1 with v1 � v 1 i01

and a � 1�4 in units of h̄ � 1:
4
p

Rea0�2iv1� � d

µ
v 6

a 1 1
2

∂

1 d

µ
v 6

a 2 1
2

∂
. (7)

The first term on the right-hand side (rhs) in Eq. (7)
corresponds to the excitation mode, e.g., between the
configurations of �"##� and �""#� for a 3-spin alignment
�Sj,1Sj,2Sj11,1�, the second between those of �###� and �"#"�.
The observation of the basis vector f2 with the largest
spin-component product is crucial for the identification of
these modes. The case with jaj � 1 satisfies the relation
of d � q 1 1 with the dimension of the Hilbert space
d � 3 and the coordination number q � 2 as shown in
some Ising models by Sen [29]. These modes denote
also the eigenvalues of the 4 3 4 matrix defined as
iL	gn
 � M	gn
 with 	g0 � f0, g1 � f0

1 , g2 � fa
1 , g3 �

f2�2a
. Here we note that these modes of order of b0

are independent of temperatures and that the number of
the modes, i.e., the structure of the Hilbert space, varies
with a. The time autocorrelation function, Eq. (2), is then
�A�t�A���A2� � cos�at�2� cos�t�2�.

Next, the XY model with Si,1�2� � �Sx
i,1�2�, S

y
i,1�2��,

which has been studied by the Jordan-Wigner transforma-
tion and other methods [15–17]. Since A given by Eq. (6)
is a conserved quantity with respect to the first term on
the rhs of Eq. (5), f1 � 2afa

1 is written with fa
1 �

2S
y
j21,2Sx

j,1 1 Sx
j21,2S

y
j,1 1 S

y
j,2Sx

j11,1 2 Sx
j,2S

y
j11,1 using

Eq. (3). This shows the left- and right-directed flow of
energy with a symmetric mode. Hereafter for brevity,
we use a notation for the basis vectors 	 fn
 such as
fa

1 � �Sy
j,2Sx

j11,1�. What is meant by the square brackets
is that a single term in it indicates four elements. The
definition is twofold. First, we yield the second element
by changing the spin x� y� component into y�x� and
multiplying a sign of �2�n. Second, we yield the rest of
two elements by taking the mirror symmetry of the first
two elements about a site j. See the expression of fa

1 .
We have � f1, f1� � 4a2a2 and then D1 � 2aa2

using Eq. (4). Using Eq. (3) again, we have f2 �
2a��Sx

j,2Sz
j11,1Sx

j11,2� 2 �Sx
j,1Sz

j,2Sx
j11,1�� 1 aa2�Sz

j11,1�.
Here note that �Sx

j,1Sz
j,2Sx

j11,1� � S
y
j21,2Sz

j,1S
y
j,2 1

Sx
j21,2Sz

j,1Sx
j,2 1 Sx

j,1Sz
j,2Sx

j11,1 1 S
y
j,1Sz

j,2S
y
j11,1, �Sz

j11,1� �
2�Sz

j21,2 1 Sz
j11,1� due to n � 2. We have D2 �

2a�1 1 a2�. The �iL�n results in the terms up
to an; however, fn does not have those in gen-
eral. The term ~ a3 already vanishes in f3, i.e.,
f3 � 22a�Sy
j,1Sz

j,2Sz
j11,1Sx

j11,2� 1 a2�3a�Sy
j11,1Sx

j11,2� 2

�Sy
j,2Sz

j11,1Sz
j11,2Sx

j12,1�� leading to � f3, f3� � 8a4a2 3

�2 1 5a2�.
We now confine ourselves to the limiting cases of a.

For a2 ø 1, we have D3 � a�2 1 3a2�. Since the term
~ a vanishes, we have f4 � a2fa2

4 , D4 � �17�2�aa2,
f5 � a2fa2

5 , and D5 � �48�17�a. One of the largest spin-
component products in f4 with the square brackets for
1 and 5 spin and f5 with those for 2, 4, and 6 spin is,
respectively,

�Sx
j,2Sz

j11,1Sz
j11,2Sz

j12,1Sx
j12,2� [ fa2

4 , (8)

�Sy
j,1Sz

j,2Sz
j11,1Sz

j11,2Sz
j12,1Sx

j12,2� [ fa2

5 . (9)

We observe that the higher fn has the larger spin-
component product. However, once the largest term in
fn is composed of the on-site spin pairs alone, fn11 does
not spread anymore as long as a is small enough. This is
because the interactions, see Eq. (5), are dominated by the
on-site interactions. In fact, not shown here, f6 and f7
spread not beyond Sj12,2 are ~ a2 like Eqs. (8) and (9),
respectively, and we have D6 � 4a, D7 � �4448�867�a.
We thus expect to have Dn$8 � O�a�. Here we
notice a single dip at n � 4 in the 	Dn
 such as
	0.005, 0.505, 0.508, 0.021, 0.706, 1, . . .
 for a2 � 0.01.

The dimensions of the 	Dn
 are infinite when the en-
ergy delocalization takes place. Now we make an ap-
proximation for summing up the continued fraction where
Dn$l12 � Dl11 with l being an order at a dip, namely,

Dl11

z1

Dl12

z1

Dl13

z1
. . . �

2z 1 �z2 1 4Dl11�1�2

2
. (10)

This approximation is valid as long as a dip is very steep
in the infinite 	Dn
. Inserting the 	Dn
 for a2 � 0.01
together with Eq. (10) with l � 4 in Eq. (1), we obtain
Rea0�2iv1� which has well-defined peaks around v �
6a�2, 61 with finite widths. This is consistent with the
D4 � 0-like features with d�v 6 a�2� and d�v 6 �1 1

3a2�2�1�2�, and survive in the Heisenberg model.
For a2 ¿ 1, we have D3 � 5a and f4 � aa3fa3

4 1

3a2�Sz
j11,1� leading to D4 � �16a�5�a2 1 68a�25 and

f5 � aa4fa4

5 1 a3fa3

5 , where fa3

5 includes the square
brackets for 2, 4, and 6 spin. One of the largest spin-
component products is

�Sy
j,2Sz

j11,1Sz
j11,2Sz

j12,1Sz
j12,2Sx

j13,1� [ fa3

5 . (11)

We have D5 � �4�5�aa2 1 �1647�400�a and thus as-
sociate Eq. (3) with f6 � O�a5�; however, such a term
vanishes and we obtain f6 � aa4fa4

6 leading to D6 �
�345�16�a, f7 � aa5fa5

7 , and D7 � �86�23�aa2. One
of the largest spin-component products in f6 and f7 is,
respectively,

�Sx
j11,1Sz

j11,2Sz
j12,1Sz

j12,2Sx
j13,1� [ fa4

6 , (12)

�Sy
j,2Sz

j11,1Sz
j11,2Sz

j12,1Sz
j12,2Sx

j13,1� [ fa5

7 . (13)
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Since the interactions, see Eq. (5), are dominated
by the intersite interactions, the operators including
Sj13,1 commute with the second term of the rhs of
Eq. (5). It follows as shown in Eqs. (11)–(13) that
fn$8 does not spread beyond Sj13,1 and that we ex-
pect to have fn$8 ~ an22 and then Dn$8 ~ a2. Here
we notice two dips at n � 3, 6 in the 	Dn
 such as
	50, 50.5, 1.25, 80.7, 21.0, 5.39, 93.5, . . .
 for a2 � 100.
The first dip at n � 3 results in the peaks at v � 0, 6jaj
and the second dip at n � 6 divides those into two
structures, respectively. This splitting is not observed
in the Heisenberg model. We have Rea0�2iv1� �
�p�8� 	d�v 6 �jaj 6 v0�� 1 2d�v 6 v0�
 with v0 �
�D3�10�1�2 � 0.354 as jaj ! `.

Finally, we study the Heisenberg model with Si,1�2� �
�Sx

i,1�2�, S
y
i,1�2�, S

z
i,1�2��. We have the same f1 leading to

D1 � 2aa2 as in the XY model. We further have f2 �
2a��Sz

j,1Sx
j,2Sx

j11,1�2�Sx
j,1Sz

j,2Sx
j11,1�1�Sx

j,2Sz
j11,1S

x
j11,2�2

�Sx
j,2Sx

j11,1Sz
j11,2�� 1 aa2�Sz

j11,1� leading to D2 � 4a 1

2aa2. We have no term ~ a3 in f3 as in the XY model;
however, the spin flip effect of Eq. (5) results in many
terms as f3 � afa

3 1 a2fa2

3 , where fa
3 and fa2

3 have
the square brackets for 2 and 4 spin. We have � f3, f3� �
24a4a2�4 1 3a2�.

For a2 ø 1, we have D3 � 6a 1 �3a�2�a2 and
f4 � 26aafa

4 1 a2fa2

4 , where fa
4 � �Sz

j,1Sx
j,2Sx

j11,2� 2

�Sx
j,1Sz

j,2Sx
j11,2� 1 �Sx

j,1Sz
j11,1Sx

j11,2� 2 �Sz
j,1Sx

j11,1Sx
j11,2�

and fa2

4 has the square brackets for 1, 3, and 5 spin. We
then have D4 � 6a 1 �91a�12�a2 and f5 � 2afa

5 1

a2fa2

5 , where fa
5 � 24a2�Sy

j,1Sx
j11,2� and fa2

5 has the
square brackets for 2, 4, and 6 spin. The 6-spin align-
ments are with three on-site spin pairs around the site j:

�Sj22,1Sj22,2Sj21,1Sj21,2Sj,1Sj,2� ,

�Sj21,1Sj21,2Sj,1Sj,2Sj11,1Sj11,2� , (14)

�Sj,1Sj,2Sj11,1Sj11,2Sj12,1Sj12,2� .

We further have D5 � 4a 1 �299a�12�a2 and f6 �
2afa

6 1 a2fa2

6 ; however, fa
6 � i�

P
i Si,1 ? Si,2, fa

5 �2 1

4afa
4 does vanish indeed. The leading order in f6 is

thus a2 and fa2

6 has the square brackets for 1, 3, and
5 spin; hence we have D6 � �2393a�24�a2 and f7 �
a2fa2

7 with fa2

7 � i�
P

i Si,1 ? Si,2, fa2

6 �2, which has the
square brackets for 2, 4, and 6 spin. This leads to D7 �
�147 898�7179�a. The 6-spin alignments are identical to
those in (14).

Similarly as seen in the XY model for this case,
we expect to have fn$8 � a2fa2

n$8 with fa2

even$8
composed of the square brackets for 1, 3, and
5 spin and fa2

odd$9 of those for 2, 4, and 6 spin, and
Dn$8 ~ a. We observe a dip at n � 6 in the 	Dn
 such
as 	0.005, 1.005, 1.504, 1.519, 1.062, 0.249, 5.150, . . .
 for
a2 � 0.01. We use Eq. (10) with l � 6 and calculate
Eq. (1) to show the spectra in Fig. 1 for a2 � 0.052,
0.12, and 0.152. The result clearly shows the excitations
around v � jaj�2, 1, and 2.
1670
FIG. 1. The well-defined local excitations of v � 1 and 2 in
Rea0�2iv1� in the Heisenberg models with a2 � 0.052, 0.12,
and 0.152. The energy unit is the on-site AF exchange integral
JAF . The inset shows the low energy part.

We explain the result shown in Fig. 1 mathematically
and physically. We insert the 	Dn
 with D6 � 0, i.e.,
a � 0 and a � 1�4 into Eq. (1) to yield

a0�z� �
z�z4 1 5z2 1 4�

z2�z4 1 5z2 1 4� 1 g�z, a�
(15)

with g�z, a� � 0. This is simplified as a0�z� � z21

leading to Rea0�2iv1� � pd�v�, which means Eq. (6)
is a constant of motion. In uniform chains we expect that
Eq. (6) has a simple Lorentzian spectrum at T � `. On
the contrary, when the alternation sets in, g�z, a� ~ a2

for a2 ø 1 splits d�v� into two structures at jvj �
jaj�2 and produces well-defined peaks, no shoulders, at
jvj � 1, 2 due to z4 1 5z2 1 4 � �z 2 2i� �z 2 i� �z 1

i� �z 1 2i�. This factor results from the dominant 	Dn
 up
to n � 5: 	D2, D3, D4, D5
 � 	4a, 6a, 6a, 4a
 with a �
1�4. The single dip in the present 	Dn
 reproduces these
features, which are intrinsic for alternating chains not
for uniform chains [27,30,31]. The spectra in Fig. 1 are
compared to Eq. (7) in the Ising model and the results
in the XY model for a2 ø 1. The approximation of
Eq. (10) gives finite widths for each spectrum superposed
on the Lorentzian-like tail, the surviving d�v�, and almost
a-independent value at v � 0.

We pay attention to the basis vectors 	 fn#5
 to classify
these modes. The low energy mode around v � jaj�2
is attributed to, e.g., the transition between the configura-
tions �"##� and �"#"� for a 3-spin alignment �Sj,1Sj,2Sj11,1�.
The delocalization energy of unity corresponds to the
single singlet-to-triplet local excitation like a soliton, 1 �
1�4 2 �23�4�, in an on-site spin pair within a 6-spin
alignment in (14), and twice to the double one in two on-
site spin pairs within it. A similar consideration of (14)
seems to make the triple one possible; however, it cannot
be observed from the present 	Dn
, neither the quadruple
one. While the ratio of the intensity at v � 1, 2 to that
around v � 0 is O�0.01�. Therefore, it might follow that
each spin in this system fluctuates not freely at all, but
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with very short-ranged and very weak correlations still
existing at T � `.

The autocorrelation function is related to
S�v� �

P
q S�q, v� of neutron scattering. The spectra

shown in Fig. 1 are expected to be similar to the case
at high temperatures, kBT ¿ JAF . As a2 increases for
this regime, the Lorentzian-like tail masks the intensity
around v � jaj�2, while those around v � 1, 2 almost
unchange and do survive against the growth of the tail.
See Fig. 1. When the excitations are dispersionless at
high temperatures, I�v� in Raman scattering with q � 0
and S�q, v� are then likely to show similar spectra.
We further obtain T

P
q Imx�q, v��v � Rea0�2iv1�.

However, discussion on NMR relaxation rate 1�T1 is
inappropriate because the almost a-independent value at
v � 0 is an artifact of the approximation. Noting that
the sign of a does not affect the 	Dn
, the dynamics of
the AF-F and the AF-AF alternating chains are not dis-
tinguished. The energy unit of reported compounds is at
most O�10K�. A candidate for observation of such spectra
is, e.g., �CH3�2CHNH3CuBr3 with a � 20.54 [7].

For a2 ¿ 1, we have D3 � 9a and f4 � 2aa3fa3

4 ,
where fa3

4 � i�
P

i Si21,2 ? Si,1, fa2

3 �2 has the square
brackets for 3 spin alone. We have D4 � �20a�3�a2 and
f5 � aa4fa4

5 , where fa4

5 � i�
P

i Si21,2 ? Si,1, fa3

4 �2 1

�20�3�fa2

3 has the square brackets for 2 and 4 spin. This
leads to D5 � �1148�135�aa2. Different from the XY
model for this case, we expect to have f6 � O�a5�. Such
a term as in Eq. (12) is of next leading order. No dip in
the 	Dn
 at n � 6 is expected. We again observe a dip
at n � 3 in the 	Dn
 such as 	50.0, 51.0, 2.25, 167, . . .
 for
a2 � 100. We use Eq. (10) with l � 3 and calculate
Eq. (1) to obtain Rea0�2iv1� with each spectrum at
v � 0 and around v � 6jaj had nearly the same
intensity and linewidth � jaj21. The spectra converge
to Rea0�2iv1� � �p�4� �d�v 6 jaj� 1 2d�v�� as
jaj ! ` when the alternation infinitely strengthens.

Equation (2) at T � ` for a � 0, �A�t�A���A2� � 1,
decreases with an envelope of 6 exp�2t�t� for a2 ø 1
both in the XY and the Heisenberg models. For a2 ¿ 1,
while it has an envelope of 1 exp�2t�t0� in the Heisenberg
model and converges to �1 1 cosat��2, it has a slower tail
in the XY model and converges to cosv0t�1 1 cosat��2.

In summary, we have investigated the dynamics of
S � 1�2 alternating chains in limiting cases at T � ` in
terms of the continued fraction formalism with recurrence
relations, to obtain the well-defined delocalization models
of JAF and 2JAF . In this system very short-ranged
and very weak correlations might survive dynamically at
T � `. We have also raised the possibility of observing
these modes in neutron and Raman scattering at high
temperatures, kBT ¿ JAF . These features are manifest
in the dip in the continued fraction coefficients 	Dn
.
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