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The well-defined delocalization modes of Jor and 2J4r, Where Jar is the antiferromagnetic exchange
integral in a spin pair, are obtained in the S = 1/2 alternating chains for (a/Jap)? < 1l @ T =
in terms of the continued fraction formalism with the recurrence relations method. These modes
correspond to the single and the double singlet-to-triplet local excitations, respectively. Dynamically

these very short-ranged and very weak correlations survive at T = oo,

We raise the possibility of

observing these modes in neutron and Raman scattering at high temperatures, kg T > Jr.

PACS numbers: 75.10.Jm, 05.70.Ln, 75.40.Gb

Since the Haldane conjectures[1,2] and the discovery of
the inorganic spin-Peierls compound CuGeO; [3], the S =
1/2 dternating chains have attracted again the attention
of theoretica and experimental workers. Experimental
results on these spin chains have reported on magnetic
susceptibility, specific heat, and neutron scattering data
[3-8]. Although a number of studies have been made
on, eg., a gap formation and static quantities [4,9—-14],
little is known about the dynamics especially theoretically
[15-17].

The purpose of this Letter is to show the emergence of
well-defined delocalization modes in the S = 1/2 dlter-
nating chains at 7 = <0 and to raise the possibility of ob-
serving the modes in neutron and Raman scattering at high
temperatures. This study aso opens the door to the dy-
namics with a new viewpoint. That is, high temperature
dynamics can be distinguished in systems where, e.g., how
dimers are geometrically configurated in the ground state.
Although spins are uncorrelated at T = o0, dynamics un-
like thermodynamics may include the characteristic modes
of a system.

The continued fraction formalism [18] has developed
from the generalized Langevin equation [19] and applied
to the linear response theory [20], as

1 Ay Ay Aj
z+ z+ z+ z+ 7
for the Laplace transform ay(z) = f§ dt e “ag(t) of
ao(t) = (A(1),A) (A,4)™" @)
for adynamical variable A, where the Kubo scalar product
is (A(1),A) = 1/B [((A(r — ii)AT)dX — (A()(A)
with (0) = Tr{Oe PH]/Tile PH]and B = 1/kgT. The
anomalous ESR spectra [21] was explained using Eqg. (1),
but there were some difficulties to obtain the continued
fraction coefficients {A,}. Later Lee [22,23] obtained a
more simplified method of calculating a d-dimensional
{A.}as

(1)

ap(z) =

Sfn+1 =1iILf, + Anfn*l > (3)

Ay = (s fD Furs S0 @
with iLO = (i/h)[H,0]-, fo=A. The boundary
conditionsare Ay = 1 and f—; = 0. We can reformulate
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A(t) = Y20 an (1) f, Wwith time-dependent c-number
functions including Eq. (2). Equation (3) helps classify
the excitation modes and Eq. (4) determines the excitation
energy. Some issues such as electron gas [24,25], spin
system [26—32], and strongly correlated system [33,34]
have been discussed using Egs. (3) and (4).

The Hamiltonian of the S = 1/2 alternating chainsiis

H = JAFZ_Si,l ©Sip — azsi—l,z “Si1, (9

where a vector S; j(2) denotes a S = 1/2 operator at the
left (right) side in a molecule on a site i [35]. The on-
site antiferromagnetic (AF) exchange integral Jar takes
the energy unit and a coupling constant « controls the
class and strength of alternation. Equation (5) describes
the AF-ferromagnetic (AF-F) aternating chain for o > 0
and the AF-AF alternating one for « < 0. The system
with S = 1 corresponds to that for o = +0.

We investigate the dynamics of a sum of the spin z
component at both sides on a certain site j,

A=S5, + 5, (6)

a T = . That is, when the supply of energy obtained
from a small external field is suddenly turned off at a
time ¢+ = 0, how does the energy delocalize from a site
j? Although each spin thermally fluctuates at 7T = oo,
dynamics different from thermodynamics includes the
characteristic modes. Our interest is in the identification
of these characteristic delocalization modes. Here we
note that the Kubo scalar product at T = « becomes the
correlation function and that its evaluation can be done by
taking the trace of products and neglecting fluctuations.
We thus have (fo,fo) = 2a with a = S(S + 1)i?/3
because the trace of the cross terms vanishes. We classify
Eg. (5) into three models as shown below.

We begin with the Ising model with S; 1) = 7).
Using Eq. (3), we have fi = f{ — aff" with f{ =
SiiSia + S8ty and £ = Si_12871 + SjaSTein
which leads to (fi, f1) = 2a*(1 + «?). It is clear that
A; = a(l + a?) from Eq. (4). By successive use of
Egs. (3) and (4), we obtain f, = 2a/(S;-1255:S;> +
11852810, f3="2aa(l — &) (af? + f1)/(1 + a?)
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and f, =0, which lead to A, = 4aa’/(1 + a?),
Az =a(l — a®)?/(1 + a?) and Ay = 0, respectively.
This is equivalent to the fact that the Hilbert space of A
given by Eq. (6) is spanned by { f,,<3} only and that the
excitation localized on a site j does not spread but oscil-
lates within a 3-spin aignment. This finite d-dimensional
Hilbert space also persists at finite temperatures.

The oscillation mode is obtained by inserting the {A,,}
into Eq. (1) and puttingz = —iw* withw® = o + i0*
anda = 1/4inunitsof i = 1:

a + 1)
2
o

%Reﬁo(—iaﬁ) = 6<w *
+ 6<w + 2_ 1). )

The first term on the right-hand side (rhs) in Eq. (7)
corresponds to the excitation mode, eg., between the
configurations of (f}) and (1f]) for a 3-spin alignment
(8;,15;28+1,1), the second between those of (|}]) and (1l1).
The observation of the basis vector f, with the largest
spin-component product is crucial for the identification of
these modes. The case with |a| = 1 satisfies the relation
of d = g + 1 with the dimension of the Hilbert space
d = 3 and the coordination number ¢ = 2 as shown in
some Ising models by Sen [29]. These modes denote
also the eigenvalues of the 4 X 4 matrix defined as
iL{g,} = M{g,} With {g0 = fo.g1 = f1.82 = ff'. g3 =
f2/2a}. Here we note that these modes of order of g8°
are independent of temperatures and that the number of
the modes, i.e., the structure of the Hilbert space, varies
with @. Thetime autocorrelation function, Eq. (2), isthen
(A(1)A)/(A?) = cos(at/2)cos(t/2).

Next, the XY model with S;i2) = (510257 102),
which has been studied by the Jordan-Wigner transforma-
tion and other methods [15—-17]. Since A given by Eq. (6)
is a conserved quantity with respect to the first term on
the rhs of Eq. (5), fl = —afl is written with f{* =

— 8712871 + ST1087 + SjaSTen — S§aSje using
Eq. (3) ThIS shows the Ieft— and right-directed flow of
energy with a symmetric mode. Hereafter for brevity,
we use a notation for the basis vectors {f,} such as
fi = [S728}+1.1]. What is meant by the square brackets
is that a single term in it indicates four elements. The
definition is twofold. First, we yield the second element
by changing the spin x(y) component into y(x) and
multiplying a sign of (—)". Second, we yield the rest of
two elements by taking the mirror symmetry of the first
two elements about a site j. See the expression of f7'.

We have (f1,f1) = 4a*a* and then A, = 2aa?
using Eg. (4). Using Eg. (3) again, we have f, =
—a(S;2851187+12] = [S7.187287+1.1) + aa [S/Z+1,1]-
Here note that [SI 1S 2S1+1 1] = S] 125 1512 +
ST 128518Ta + ST1S5 08Ty + 8718508 10, [Sher ] =
2(Sj-1p + Sj411) due to n=2. We have A, =
2a(1 + a?). The (iL)" results in the terms up
to «”; however, f, does not have those in gen-
eral. The term « o adready vanishes in f3, i.e,

f3= _20[55',15 28511812l a2(3a[S;+1,1SfH,2] -
[S7285+1.1854125742.1]) leading to (f3,f3) = 8a*a? X
(2 + 5a?).

We now confine ourselves to the limiting cases of «.
For a? < 1, wehave A; = a(2 + 3a?). Sincetheterm
« @ vanishes, we have f4 = aszz, Ay = (17/2)aa?,
fs = a2f% and As = (48/17)a. Oneof thelargest spin-
component products in f4 with the square brackets for
1 and 5 spin and f5 with those for 2, 4, and 6 spin is,
respectively,

[S7 2854118541255 42.15720] € 47, (8)

y 2
(85,1852 41155 4125742157422] € f5°. ©)

We observe that the higher f, has the larger spin-
component product. However, once the largest term in
fx is composed of the on-site spin pairs alone, f,+; does
not spread anymore as long as « issmall enough. Thisis
because the interactions, see Eq. (5), are dominated by the
on-site interactions. In fact, not shown here, f¢ and f5
spread not beyond S;1,, are = a? like Egs. (8) and (9),
respectively, and we have Ag = 4a, A; = (4448/867)a.
We thus expect to have A,=g = O(a). Here we
notice a single dip a n =4 in the {A,} such as
{0.005,0.505,0.508,0.021,0.706, 1, .. .} for a®> = 0.01.

The dimensions of the {A,} are infinite when the en-
ergy delocalization takes place. Now we make an ap-
proximation for summing up the continued fraction where
A,=+2 = A+ with [ being an order at a dip, namely,

Ay Ao Apys _ —z+ (22 4 40,412 (10)

z+ z+ z+ 2 ’

This approximation is valid as long as a dip is very steep
in the infinite {A,}. Inserting the {A,} for a? = 0.01
together with Eq. (10) with / = 4 in Eg. (1), we obtain
Reay(—iw™) which has well-defined peaks around w =
+a /2, +1 with finite widths. This is consistent with the
A, = 0-like features with 6 (w = «/2) and 6[w * (1 +
3a2/2)!/2], and survive in the Heisenberg model.

For a? > 1, we have A3 = 54 and f4 = aoﬂﬁ“3 +
3a?[S5+1,4] leading to Ay = (16a/5)a* + 68a/25 and
fs = aa*f& + a3, where ¢ includes the square
brackets for 2, 4, and 6 spin. One of the largest spin-
component products is

[Sj,2S;+l,Isz'+l,2S.]Z'+2,lsz'+2,25;+3,1] S fsas' (11)
We have As = (4/5)aa? + (1647/400)a and thus as-
sociate Eq. (3) with fg = O(a?); however such a term
vanishes and we obtain fs = aa*f¢ leading to Ag =
(345/16)a, f7 = aaf5, and A; = (86/23)aa®. One

of the largest spin-component products in f¢ and f7 is,
respectively,

(ST i1.1854+12850185228743.1] € f6 (12)

[Sjy',zsfﬂ,]SJZ'+1,2S§+2,1SJZ'+2,2S}C+3,1] € fi. (13)
1669
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Since the interactions, see Eq. (5), are dominated
by the intersite interactions, the operators including
Sj+3,1 commute with the second term of the rhs of
Eq. (5). It follows as shown in Egs. (11)—(13) that
fa=g does not spread beyond S;:3; and that we ex-
pect to have f,=s « " % and then A,=3 « a>. Here
we notice two dips af n = 3,6 in the {A,} such as
{50,50.5,1.25,80.7,21.0,5.39,93.5,...} for «a? = 100.
Thefirst dipat n = 3 resultsinthe peaksat w = 0, *|«a|
and the second dip at n = 6 divides those into two
structures, respectively. This splitting is not observed
in the Heisenberg model. We have Reay(—iw™) =
(7m/8){8[w = (la| = wo)] + 26(w * wo)} With wy =
(A3/10)/2 = 0.354 as |a| — .

Fi naIIy_, we study the Heisenberg model with S; 1) =
(S 120 Si 102 SE12)-  We have the same f; leading to
A; = 2aa? asin the XY model. We further have f, =
—a([S5187287 411187185287+ 111+ [S7285 41187 +12]—
[S;,2S;+1’1S5+1,2]) + aa2[S§+1,1] Ieadlng to Az = 4q +
2aa®. We have no term « 3 in f3 asin the XY model;
however, the spin flip effect of Eq. (5) results in many
terms as f3 = aff + a2f§, where f§ and £{ have
the square brackets for 2 and 4 spin. We have (13, f3) =
24a*a*(4 + 3a?).

For a? <1, we have A; = 6a + (3a/2)a* and
fa = —6aafi + a’fi ,where fi = [S5,57,87112] —
[Sf,lsf,zzsfﬂ,z] + [S7 1S5 11S7+12] — [S518741.187+1.2]
and i has the square brackets for 1, 3, and 5 spin. We
then have A, = 6a + (91a/12)a? and f5s = —afs +
a2f&, where f& = 24a2[S,5%11,] and f¢ has the
square brackets for 2, 4, and 6 spin. The 6-spin align-
ments are with three on-site spin pairs around the site j:

(Sj-2,18j-228-1,18j-125.152) ,
(Sj-118-1257,1828j+118j+12) 5 (14)

(Sj18j28j41,18j+128j+218j+22) -

We further have As = 4a + (299a/12)a? and fe =
—afg + a’fg ; however, f¢&' = i[>, Si - Sia, f5']- +
4afs does vanish indeed. The leading order in f¢ is
thus o2 and fg‘2 has the sgquare brackets for 1, 3, and
5 spin; hence we have Ag = (2393@/24)6!2 and f; =
Q2f8 with £8° = i[Y, Sit - Sin, £&7]-, which has the
square brackets for 2, 4, and 6 spin. Thisleadsto A; =
(147898/7179)a. The 6-spin alignments are identical to
those in (14).

Similarly as seen in the XY moqlel for this case
we expect to have fu=s = a’fses With fle,=s
composed of the square brackets for 1, 3, and
5 spin and fg‘;dzg of those for 2, 4, and 6 spin, and
A,=3 * a. Weobserve adipatn = 6 inthe{A,} such
as {0.005, 1.005,1.504,1.519,1.062,0.249, 5.150, ...} for
a’> = 0.01. We use Eq. (10) with / = 6 and calculate
Eq. (1) to show the spectra in Fig. 1 for a? = 0.05?,
0.1%2, and 0.15%. The result clearly shows the excitations
around w = |al/2, 1, and 2.
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FIG. 1. The well-defined local excitations of w = 1 and 2 in
Reay(—iw™) in the Heisenberg models with a? = 0.052, 0.12,
and 0.15%. The energy unit is the on-site AF exchange integral
Jar- Theinset shows the low energy part.

We explain the result shown in Fig. 1 mathematically
and physically. We insert the {A,} with A¢ =0, i.e,
a =0anda = 1/4into Eq. (1) toyield

72(z* + 522 + 4)
22t + 522+ 4) + gz, @)

ap(z) = (15)

with g(z,a) = 0. This is simplified as ay(z) = z7!
leading to Reay(—iw™) = 78(w), which means Eq. (6)
isaconstant of motion. In uniform chains we expect that
Eq. (6) has a simple Lorentzian spectrum at 7 = ». On
the contrary, when the alternation sets in, g(z, @) = a?
for a? < 1 splits 6(w) into two structures at |w| =
|a|/2 and produces well-defined peaks, no shoulders, at
lo| = 1,2duetoz* + 522 + 4 = (z — 2i)(z — i)(z +
i) (z + 2i). Thisfactor results from the dominant {A,} up
to n =5 {A,, Az, Ay, As} = {4a,6a,6a,4a} with a =
1/4. Thesingle dip in the present {A,} reproduces these
features, which are intrinsic for aternating chains not
for uniform chains [27,30,31]. The spectrain Fig. 1 are
compared to Eqg. (7) in the Ising model and the results
in the XY model for a? < 1. The approximation of
Eg. (20) gives finite widths for each spectrum superposed
on the Lorentzian-like tail, the surviving 6 (), and almost
a-independent value at w = 0.

We pay attention to the basis vectors { f,,<s} to classify
these modes. The low energy mode around o = |a|/2
is attributed to, e.g., the transition between the configura-
tions (111) and (1l1) for a 3-spin aignment (S;1S;25;+1.1)-
The delocalization energy of unity corresponds to the
single singlet-to-triplet local excitation like a soliton, 1 =
1/4 — (=3/4), in an on-site spin pair within a 6-spin
alignment in (14), and twice to the double one in two on-
site spin pairs within it. A similar consideration of (14)
seems to make the triple one possible; however, it cannot
be observed from the present {A, }, neither the quadruple
one. While the ratio of the intensity at @ = 1,2 to that
around @ = 0is 0(0.01). Therefore, it might follow that
each spin in this system fluctuates not freely at all, but
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with very short-ranged and very weak correlations till
exisingat T = oo.

The autocorrelation  function is related to
S(w) = >, S(q, w) of neutron scattering. The spectra
shown in Fig. 1 are expected to be similar to the case
at high temperatures, kg7 > Jar. As a? increases for
this regime, the Lorentzian-like tail masks the intensity
around w = |a|/2, while those around w = 1,2 almost
unchange and do survive against the growth of the tail.
See Fig. 1. When the excitations are dispersionless at
high temperatures, I(w) in Raman scattering with ¢ = 0
and S(q,w) are then likely to show similar spectra.
We further obtain 73, Imy (g, w)/w = Redp(—iw™).
However, discussion on NMR relaxation rate 1/7T; is
inappropriate because the aimost «a-independent value at
w = 0 is an artifact of the approximation. Noting that
the sign of a does not affect the {A,}, the dynamics of
the AF-F and the AF-AF alternating chains are not dis-
tinguished. The energy unit of reported compounds is at
most O(10K). A candidatefor observation of such spectra
is, eg., (CHg)QCHNH3CUBI’3 with @ = —0.54 [7]

For a? > 1, we have A; = 9a 2and f4 = —aa3ffz,
where f§ =i[>;8i—12 - Si1,f5 |- has the square
brackets for 3 spin alone. We have Ay = (20a/3)a? and
f5 = aa’fs’, where & =i[Y,; Si1a - Sin il +
(20/3)f3“2 has the square brackets for 2 and 4 spin. This
leads to As = (1148/135)aa?. Different from the XY
model for this case, we expect to have f¢ = O(a’). Such
aterm asin Eq. (12) is of next leading order. No dip in
the {A,} a n = 6 is expected. We again observe a dip
atn = 3inthe{A,} such as{50.0,51.0,2.25,167,...} for
a? = 100. We use Eq. (10) with / = 3 and calculate
Eq. (1) to obtain Reay(—iw™*) with each spectrum at
w =0 and around w = *=|a| had nearly the same
intensity and linewidth = |a|~!. The spectra converge
to Reay(—iw’) = (7/4)[6(w * |a]) + 26(w)] as
|| — o when the alternation infinitely strengthens.

Equation (2) a T = « for a = 0, {(A(t)A)/(A%) = 1,
decreases with an envelope of = exp(—t/7) for a® < 1
both in the XY and the Heisenberg models. For a? > 1,
whileit hasan envelopeof + exp(—r/7') inthe Heisenberg
model and convergesto (1 + cosat)/2, it hasasdower tail
in the XY model and converges to coswot(1 + cosat)/2.

In summary, we have investigated the dynamics of
S = 1/2 alternating chains in limiting casesat T = « in
terms of the continued fraction formalism with recurrence
relations, to obtain the well-defined delocalization models
of Jag and 2J4gr. In this system very short-ranged
and very weak correlations might survive dynamically at
T = . We have aso raised the possibility of observing
these modes in neutron and Raman scattering at high
temperatures, kgT > Jap. These features are manifest
in the dip in the continued fraction coefficients {A,,}.
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