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A Relation between the Resonance Neutron Peak and ARPES Data in Cuprates
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We argue that the resonant peak observed in neutron scattering experiments on superconducting
cuprates and the peak/dip/hump features observed in ARPES measurements are by-products of the
same physical phenomenon. Both are due to feedback effects on the damping of spin fluctuations in
a d-wave superconductor. We solve a set of coupled integral equations for fermionic and bosonic
propagators, and show that the dynamical spin susceptibility below Tc possesses the resonance peak at
Vres ~ j21. The scattering of these magnetic excitations by electrons gives rise to a peak/dip/hump
behavior of the electronic spectral function, the peak-dip separation is exactly Vres.

PACS numbers: 74.20.Mn, 75.30.Ds
One of the most intriguing recent developments in the
physics of high Tc materials is the realization that not
only the normal but also the superconducting state of
cuprates is not described by a weak coupling theory. In
particular, angle-resolved photo emission spectroscopy
(ARPES) experiments on Bi2Sr2CaCu2Od1d (Bi2212)
have demonstrated [1,2] that even in slightly overdoped
cuprates at T ø Tc, the spectral function A�k, v� near
�0, p� does not possess a single quasiparticle peak at
v �

p
D2

k
1 e2

k
, where Dk is the superconducting

gap and ek is the fermionic dispersion. Instead, it
displays a sharp peak which virtually does not dis-
perse with k, a dip at frequencies right above the peak,
and then a broad maximum (hump) which disperses
with k and gradually recovers the normal state disper-
sion [1]. Simultaneously, the neutron scattering experi-
ments on near optimally doped YBa2Cu3O72S (YBCO)
[3] and Bi2212 [4] at T ø Tc have detected a sharp reso-
nance peak in the dynamical structure factor S�q, V� ~

x 00�q, V� centered at q � Q � �p , p� and at frequencies
�40 meV.

In this communication we show that the resonance peak
in S�Q, V� and the peak, dip, and/or hump features in
A�k, v� can be explained simultaneously by strong inter-
action between electrons and their collective spin degrees
of freedom which, near the antiferromagnetic instability,
are peaked at or near Q. Specifically, we demonstrate
that a d-wave superconductor possesses propagating col-
lective spin excitations at frequencies smaller than twice
the maximum value of the d-wave gap. The propagat-
ing spin modes give rise to a sharp peak in S�Q, V� at
V � Vres ~ j21, where j is the spin correlation length.
The interaction with collective spin excitations yields the
fermionic self-energy Sv which at T � 0 has no imagi-
nary part up to a frequency v0 which exceeds the mea-
sured superconducting gap by exactly Vres.

The point of departure for our analysis is the spin-
fermion model for cuprates which is argued [5] to be
the low-energy theory for Hubbard-type lattice fermion
models. The model is described by
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Here c
y
k,a is the fermionic creation operator for an electron

with crystal momentum k and spin a, si are the Pauli
matrices, and g is the coupling constant which measures
the strength of the interaction between fermions and the
collective bosonic spin degrees of freedom. The latter
are described by Sq and are characterized by a bare spin
susceptibility x0�q� � x0j2��1 1 �q 2 Q�2j2�.

Equation (1) gives rise to fermionic and bosonic self-
energies and is particularly relevant for fermions near
hot spots—the points at the Fermi surface separated by
Q. In cuprates, the hot spots are located near �0, p� and
symmetry related points. The presence of hot spots is
essential for our consideration because the fermions near
these points are mostly affected by the interaction with
antiferromagnetic spin fluctuations, and at the same time,
they produce the dynamical part of the spin propagator
because a spin fluctuation with a momentum near Q can
decay into fermions only near hot spots.

The normal state properties of the spin-fermion model
have recently been analyzed and compared with the ex-
periments [5,6]. It was argued that the experimental situ-
ation in cuprates corresponds to a strong coupling limit
R � ḡ�yFj21 ¿ 1, where ḡ � g2x0 is the measurable
effective coupling constant. The clearest experimental in-
dication for this is the absence of the sharp quasiparticle
peak in the normal state ARPES data for optimally doped
and underdoped cuprates [1,2]. At strong coupling, a con-
ventional perturbation theory does not work, but it turns out
that one can single out the most divergent diagrams, and in-
corporate them into a new “mean-field” ground state. This
“mean-field” theory becomes exact if one formally sets the
number of hot spots N � 8 to infinity. At finite N , the
expansion around the new vacuum holds in �1�N� logR,
but the prefactors are very small [5] such that for practical
© 1999 The American Physical Society
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purposes, one can restrict with the N � ` theory except
very near the antiferromagnetic transition.

This N � ` theory has some similarities with the mean-
field d � ` theories [7]: it incorporates the dominant (�R)
self-energy correction which depends only on frequency,
and also includes the dominant bosonic self-energy which
is the spin polarization bubble made of the renormalized
fermions. The corresponding set of self-consistent equa-
tions is presented in Eq. (2) for a superconducting state.
The normal state results are obtained by setting D � 0.

The key physical effect which the N � ` theory de-
scribes is the progressive destruction, with increasing R,
of the coherent quasiparticle peak. At the same time, the
fermionic incoherence has no feedback on spin susceptibil-
ity which still has a simple relaxational form: x21�q, V� �
x0j2��1 1 �q 2 Q�2j2 2 iV�vsf�, where vsf � �2p�
N� �yFj21��R [5]. The absence of the feedback effect
on spins is a quite general consequence of the fact that
fermionic self-energy, abeit strong, has no dependence on
the quasiparticle momentum [8].

In the superconducting state, this argument does not ap-
ply any more because superconducting and normal state
Green’s functions have different momentum dependences.
As a result, the feedback effect on spins is present, and
already at the N � ` level one has to solve a set of cou-
pled integral equations for the fermionic propagator and
the spin polarization operator. This is the key intent of
the present work. We, however, will not attempt to self-
consistently find also the pairing susceptibility which in the
spin-fermion model results from multiple spin-fluctuation
exchanges in the particle-particle channel [9]. Instead, we
assume that below Tc the pairing susceptibility is a con-
ventional d function of a total momentum and frequency
of a pair with the d-wave amplitude D

2
k . In other words,

we will not distinguish between the true superconducting
gap and the pseudogap. The full consideration should in-
deed include pairing fluctuations into the self-consistent
procedure. We will also neglect the processes which scat-
ter fermions near �0, p� into fermions with momenta along
zone diagonal where the d-wave gap is absent. The con-
tributions from these processes soften sharp features as-
sociated with the k-independent gap, but are likely to be
small numerically as they involve high-energy spin fluctu-
ations with momenta far from Q. Still, however, we will
fully explore the fact that for dx22y2 symmetry of the gap,
Dk1Q � 2Dk .

We now derive a set of coupled equations for fermionic
and spin propagators in superconducting state. We intro-
duce normal and anomalous fermionic Green’s functions
G�k, v� � G0�k, v���1 1 D

2
kG0�k, v�G0�2k, 2v�� and

F�k, v� � 2iDk��1 1 D
2
kG0�k, v�G0�2k, 2v�� where

G21
0 �k, v� � v 2 Sv 2 vF�k 2 kF� is the zero-order

Green’s function for 1�N expansion. This G0�k, v�
contains a self-energy which results from an exchange
of a spin fluctuation with x�q, V� � x0j2��1 1

�q 2 Q�2j2 2 PV� where the spin polarization bubble
PV is by itself a convolution of GG and FF. This
construction yields a set of two coupled integral equations
Sv � 3ig2
Z d2q dV

�2p�3 G�k 1 q, v 1 V�x�q, V� , PV � 22Niḡj2
Z d2k dv

�2p�3 �G�k, v�G�k 1 Q, v 1 V�

1 F�k, v�F�k 1 Q, v�� . (2)
It is instructive to consider first the solution of Eqs. (2)
in the weak coupling limit D ø ḡ ø yFj21. To first
approximation, PV can then be evaluated with the free
fermion Green’s functions. This has been done before
[10], and we just quote the result: in the supercon-
ducting state, PV has both real and imaginary parts.
The ImPV � 0 for V , 2D, it jumps at V � 2D to
pD�vsf, and then increases and approaches V�vsf at
V ¿ 2D. This behavior is similar to that in an s-wave
superconductor except for the jump which is absent in
an s-wave case and is directly related to the fact that
Dk1Q � 2Dk .

The RePV can be obtained either directly or using
the Kramers-Kronig relation. At V ø D, we have
ReP�v� � �p�8�V2��Dvsf�. It diverges at 2D as
PV � �D�vsf� log�2D�j2D 2 Vj� because of the jump
in ImPV , and decreases at larger frequencies. Because
of the divergence, RePV reaches 1 at a frequency Vres
which is less than 2D, i.e., when ImPV is still zero.
Explicitly, Vres � 2D�1 2 Z� where Z ~ e2vsf��2D�.
Near Vres, x�Q, V� ~ Z��V 2 Vres 2 id�, i.e., the
dynamical structure factor has a resonance peak.
Consider next the fermionic spectral function. With-
out self-energy corrections, A�k, v� near a Fermi surface
resonates at vres � D. The self-energy gives rise to a
fermionic decay. For an s-wave superconductor, the on-
set frequency for a decay is 3D, and ImS�k, v� emerges as
�v 2 3D�1�2 [11]. The presence of the resonance mode
qualitatively changes this picture because a fermion can
decay into this mode starting from v0 , 3D. A sim-
ple power counting shows that this process yields a fi-
nite jump of ImSv at the onset frequency and hence the
logarithmical singularity in ReSv . The latter in turn in-
creases the self-energy at v � D and shifts downwards
vres (which is the measured gap), and the onset frequency
for ImPV which, as one can easily demonstrate, exactly
equals 2vres. The amounts of the shifts and the ampli-
tude of the jump in ImSv can be obtained explicitly from
Eqs. (2). We found v0 � 3D�1 2 e�, vres � D�1 2 e�,
and d�ImSv0� � �pD� log2�e, where e � �3 log2

p
N�

�64
p

p �� ḡ�D�1�2e2vsf��2D�.
We see that the d-wave form of the gap yields qualitative

changes in the system behavior compared to the s-wave
case, but at small coupling these changes are exponentially
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small and can hardly be measured. In particular, the
resonance peak in S�Q, v� should be smeared out already
by a small experimental resolution. The weak coupling
results are shown in Fig. 1.

We now turn to strong coupling limit ḡ ¿ D ¿
�vsfḡ�1�2. Solving Eq. (2) as explained below, we found
that the peak frequency in A�kF , v� (i.e., the measured gap)
is now vres � D � D2�ḡ. The nonzero ImPV and ImSv

appear, respectively, at 2D and v0 � D�1 1 a� where
a ~ �vsf�D�1�2 ~ j21. The amounts of jumps in ImPV

and ImSv both scale as a1�2 and disappear at j � `

when vsf � 0. Above the threshold, ImSv first increases
as ImSv ~ �v 2 v0�n where n �

p
3 2 1, and then

recovers the normal state,
p

v behavior. Substituting this
S into G�v�, we found that it possesses a peak at vres,
a dip at v0 and a hump at vhump � vres�1 1 b� where
b ~ j21��2n� logj. At j � `, peak, dip, and/or hump
positions coincide with each other, and the peak, dip, and/
or hump structures transform into the edge singularity:
A�v� ~ �v 2 vres�2n .

Further, the fact that ImPV � 0 up to 2vres implies,
via Kramers-Kronig relation, that at small frequencies
RePV ~ V2��vsfD�. Substituting this result into
S�q, v�, we find that it possesses a resonance peak at

FIG. 1. The T � 0 weak coupling behavior of the dynamical
structure factor and the spectral function. Solid lines are
schematic solutions of Eqs. (2) broadened by experimental
resolution. Without resolution, the peaks are d functions as
indicated by arrows. The insets show the spin polarization
operator PV and the fermionic self-energy Sv (solid lines—
imaginary parts; dashed lines— real parts). The vertical dashed
lines denote logarithmical singularities.
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Vres � �vsfD�1�2 � j21 ø 2D. At q fi Q, the peak
disperses with q as V2 � v2

res�1 1 ��q 2 Q�j�2�, just as
a conventional spin wave, until V reaches 2vres, and at
larger frequencies disappears due to damping.

The strong-coupling behavior of S�Q, V� and A�k, v�
is presented in Fig. 2. We see that (i) S�q, v� possesses
a sharp resonance peak at Vres � j21 which shifts with
underdoping to lower frequencies, and (ii) A�kF , v� pos-
sesses a quasiparticle peak at v � vres, a dip at v0 �
vres 1 Vres, where ImSv first appears, and a broad maxi-
mum at a somewhat higher frequency vhump . As the mo-
mentum moves away from the Fermi surface, the spectral
function for frequencies larger than v0 disperses with k
and recovers the normal state, non-Fermi liquid form with
a broad maximum at v � e

2
k�ḡ. The quasiparticle peak,

however, cannot move further than v0 because of a strong
fermionic damping above threshold. We found that it gets
pinned at v0 and just gradually loses its strength with in-
creasing k 2 kF .

We emphasize that although the resonance frequency
in S�Q, v� continuously evolves from weak to strong
coupling, the physics changes qualitatively between the
two limits. At weak coupling, the peak is solely due to
a jump in ImPV . At strong coupling, the jump is almost
gone, and the existence of peak is due to V2 behavior of
RePV which is related to vanishing ImPV below 2vres.

We now briefly discuss how we obtained these results.
We first integrated partly over momentum in (2) and for
R � ḡ��yFj21� ¿ 1 obtained

FIG. 2. Same as in Fig. 1 but at strong coupling. The
resonance and onset frequencies are presented in the text. The
spin resonance frequency Vres ~ j21, is equal to the distance
between the measured gap D and the dip frequency v0. The
hump frequency differs from D roughly by j0.7.
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Sv �
3R
8p2

Z Sv1Vq
q2

x 1 S
2
v1V 2 D2

dV dqxp
q2

x 1 1 2 PV

,

(3)

PV �
i
2

Z dv

vsf

0
BB@ SV2vSv 1 D2q

S
2
V2v 2 D2

p
S2

v 2 D2
1 1

1
CCA .

(4)

We then performed self-consistent calculations: we first
evaluated regular terms in ReS and ReP by expanding
(3) and (4) in the external frequencies. We obtained
ReSv ~ v�ḡ� D�1�2 and RePV ~ V2�Dvsf. In both
cases, the integrals are confined to frequencies �D where
one can estimate the integrands by using the normal state
results for Sv and Pv . We then assumed that at some
finite frequency v0 ImSv jumps from 0 to some finite
value, considered the onset frequency and the amount of
the jump as input parameters, and used Kramers-Kronig
relation to calculate the logarithmically singular term in
ReSv . Adding it to a regular ReSv ~ v, we find vres
where v 1 ReSvres � D. Substituting next ReSv into
(4) and using the spectral representation for ImPV , we
find the threshold frequency for ImPV at 2Vres and the
amount of the jump at the threshold. We then again use
the Kramers-Kronig relation to calculate a logarithmically
singular contribution to ReP, add it to a regular RePV ~

V2, and substitute the result into (3) for Sv . Using again
the spectral representation for ImSv , we find and solve
two self-consistent equations for threshold frequency v0
and for the amount of the jump at the threshold.

We now compare our results with the data. Qualita-
tively, the peak, dip, and/or hump behavior of A�k, v�,
the absence of the peak dispersion with k, and the pres-
ence of the dispersing resonance mode in S�q, v� all agree
with the ARPES and neutron measurements in YBCO
and Bi2212 [1–4]. More quantitatively, we predict that
the peak-dip separation in A�k, v� at a hot spot exactly
equals to the resonance frequency in S�Q, V�. Experi-
mentally, in near optimally doped, Tc � 87 K Bi2212,
v0 2 vres 	 42 meV [1]. Recent neutron scattering data
[4] on Bi2212 with nearly the same Tc � 91 K yielded
Vres � 43 meV, in full agreement with the theory.

We now connect our work to earlier studies. That the
interaction with a nearly resonant collective mode peaked
at Q explains the ARPES data has been known for some
time, and qualitative arguments have been displayed first
in [12] and then in [1]. Reference [1] also conjectured
that the peak-dip separation may be related to a neutron
peak frequency. It has been also realized earlier that in
a d-wave superconducting Fermi gas, S�Q, V� contains
a resonance peak exponentially close to 2D [11]. From
this perspective, the key intention of this work was to
present the quantitative results for cuprates by performing
actual strong coupling calculations, and to explicitly relate
ARPES and neutron scattering data.
Morr and Pines [13] obtained the spin-wave-like disper-
sion in x�q, V� below Tc by phenomenologically adding
the V2 term to the bare susceptibility. This term should
be in the form V2�eF as it can come only from fermions
located far away from the Fermi surface. We have demon-
strated that at T , Tc, the spin-fermion model of Eq. (1)
by itself generates an V2�D term which for D ø eF com-
pletely overshadows a possible bare V2 term.

Morr and one of us [6] considered an approximate
solution of Eq. (4) assuming that PV still has the same
purely relaxational form iV�vsf as in the normal state, but
vsf is momentum dependent. Comparing our results with
[6], we found that the approximate solution for A�k, v�
captures the main features of the full solution, i.e., the peak,
dip, and/or hump structure of A�k, v�, but yields incorrect
values of the peak and dip frequencies for D ¿ vsf.

Brinckman and Lee studied the evolution of the reso-
nance peak within the slave boson theory [14]. Their
philosophy and the results are similar to ours.

To summarize, we considered the superconducting
phase of cuprates and demonstrated that the resonance
peak in the dynamic structure factor and the peak, dip,
and/or hump structure of the electronic spectral function
near �0, p� can simultaneously be explained by a strong
spin-fermion interaction. The peak-dip separation at a hot
spot exactly equals to the resonance neutron frequency
and vanishes at j � `.
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