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Detection of Coulomb Charging around an Antidot in the Quantum Hall Regime
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We have detected oscillations of the charge around a potential hill (antidot) in a two-dimensional
electron gas as a function of a large magnetic field B. The field confines electrons around the antidot
in closed orbits, the areas of which are quantized through the Aharonov-Bohm effect. Increasing B
reduces each state’s area, pushing electrons closer to the center, until enough charge builds up for an
electron to tunnel out. This is a new form of the Coulomb blockade seen in electrostatically confined
dots. Addition and excitation spectra in dc bias confirm the Coulomb blockade of tunneling.

PACS numbers: 73.23.Hk, 73.40.Gk, 73.40.Hm
This paper addresses the fundamental question of
whether charging can occur in an open system. Coulomb
blockade (CB) of tunneling is generally observed only in
electrostatically confined “dots” where there is only partial
transmission through the entrance and exit constrictions.
It has recently been seen when one constriction is open
[1], when both constrictions transmit exactly one one-
dimensional (1D) channel [2], or when some transmitted
channels are decoupled from trapped states [3]. However,
an unambiguous demonstration requires a completely open
system, such as an antidot, which is a potential hill in a
two-dimensional electron gas (2DEG). When a magnetic
field B is applied perpendicular to the 2DEG, a set of
states, discrete in position and energy, is formed around
the antidot, for each Landau level (LL). Aharonov-Bohm
(AB) conductance oscillations arising from resonances
through such states have been studied extensively in the
integer and fractional quantum Hall (QH) regimes [4–9].
It has often been assumed that CB does not occur with
antidot states because, as charge tries to build up, the
system must immediately respond to screen it. However,
pairs of AB oscillations from the two spins of the lowest
LL were found to lock in antiphase, and this was attributed
to charging [4,5]. In a dot system, it was suggested that
the charging of edge channels is responsible for a similar
regularity of the magnetoconductance peaks [10,11].

The aim of the present work was to detect such charge
oscillations of an antidot, utilizing a noninvasive voltage
probe similar to that employed by Field et al. [12]. They
fabricated a 1D constriction as a charge detector next to a
dot but in a different circuit separated from it by a narrow
gate. When the constriction was nearly pinched off, its
resistance was very sensitive to potential variations nearby,
and, hence, it could detect charge oscillations in the dot.
We have fabricated a similar device with an antidot instead
of a dot [see inset of Fig. 1(b)]. A charging signal with
the same period as the AB oscillations in the conductance
Gad is clearly visible. The line shape and phase show
that CB of tunneling through the antidot is occurring.
dc-bias measurements are used to measure addition and
excitation spectra, confirming this interpretation. The
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charging energy saturates at high B and the single-particle
(SP) energy spacing varies as 1�B.

The devices were fabricated from a GaAs�AlGaAs het-
erostructure with a 2DEG of sheet carrier density 2.2 3

1015 m22 and mobility 370 m2�Vs after illumination by
a red light-emitting diode. A scanning electron micro-
graph of a device is shown in the inset of Fig. 1(b). A
square dot gate (Gdot), 0.3 mm on a side, was contacted
by a second metal layer evaporated on top of an insulator
(not shown), to allow independent control of gate voltages.
The lithographic widths of the antidot and detector con-
strictions were 0.45 and 0.3 mm, respectively. All con-
strictions showed good 1D ballistic quantization at B � 0.
A voltage of 24.5 V on the separation gate (Gsep), of width
0.1 mm, divided the 2DEG into separate antidot and detec-
tor circuits. The detector gate (Gdet) squeezed the detector
constriction to a resistance between 0.1 and 5 MV to make

FIG. 1. dGad�dVG-side of the antidot circuit and 2dRdet�
dVG-side of the detector circuit with the gate voltage on Gside
modulated in two different regimes: (a) nc � 2 and (b) nc , 1.
Vertical dashed lines show the alignment of the dips in the
detector signal with zeros in the transconductance oscillations.
Inset: Scanning electron micrograph of a device prior to second
metallization. (c) Illustration of the relation between various
line shapes. Grey lines in Dq and DRdet are the ideal case, and
black curves represent thermally broadened line shapes.
© 1999 The American Physical Society
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it very sensitive to nearby charge. To maximize the sensi-
tivity, transresistance measurements were made by modu-
lating the dot-gate voltage (or the voltage on the side gate
Gside) at 10 Hz with 0.5 mV rms and applying a dc current
of 1 nA through the detector constriction. Simultaneously,
the transconductance of the antidot circuit was measured
with a 10 mV dc source-drain bias, when necessary. The
experiments were performed in a dilution refrigerator with
a base temperature below 50 mK.

Figure 1 shows the transresistance 2dRdet�dVG-side
(transconductance dGad�dVG-side) vs B of the detector (an-
tidot) circuit in two different field regions: (a) nc � 2 and
(b) nc , 1, where nc is the filling factor in both antidot
constrictions, which were determined from Gad. The fill-
ing factors in the bulk 2DEG were nb � 7 and 2, respec-
tively. The oscillations in Gad occur as SP states around
the antidot rise up through the Fermi energy EF . The AB
effect causes the overall period DB to be h�eS, where S
is the area enclosed by the state at EF . The curve in (a)
has pairs of spin-split peaks, whereas in (b) only one spin
of the lowest LL is present. The dips in 2dRdet�dVG-side
correspond to a sawtooth in the change DRdet from the
background resistance [see Fig. 1(c)]. Thus the net charge
Dq nearby suddenly becomes more positive (making the
effective gate voltage less negative) whenever the antidot
comes onto resonance (since the dips line up with the ze-
ros in dGad�dVG-side). Hence, we conclude that this charge
oscillation is associated with states near the antidot. A sec-
ond sample showed very similar results.

We explain the charging as follows. As B increases, all
the states encircling the antidot move inwards, reducing
their areas to keep the flux enclosed constant, and, hence,
a net charge Dq builds up in the region around the anti-
dot. This resembles CB in a dot [13]. At low bias, the
electron in the highest occupied state cannot escape until
Dq reaches 2e�2; then it tunnels out to a nearby lead or
into a localized state in the bulk, and Dq becomes 1e�2.
At this point, charge can move easily through the antidot,
and so each dip in the detector signal lines up with such a
conductance resonance, as found experimentally (Fig. 1).
There is no electrostatically confined region around the
antidot, so charging seems impossible [6]. However, elec-
trons are magnetically confined to the antidot and the rigid-
ity of the quantum-mechanical orbitals prevents charge
relaxation. Other states further away from the antidot
might try to screen the charge buildup. However, those
in the same LL have a fixed density once it is full, and
so cannot screen. Also, due to the discreteness of the
SP states, rearrangement of charge below EF within the
partially filled region near the antidot can only cause dis-
crete changes in the charge, and would probably cost too
much Coulomb energy. One might speculate that the de-
tector would pick up not the charging of the antidot but
the change in screening by SP states near EF because they
could adjust their areas or the wave function could leak
out to the other edges on resonance [14]. However, such
screening should be symmetric around the resonances.
Therefore the transresistance would be the derivative of
periodic dips or peaks, not of a sawtooth as seen in our
measurements.

The charging of the antidot is not dependent on the
presence of conductance oscillations in the antidot circuit.
Thus it is still possible to observe the signal with no applied
bias in the antidot circuit, or when the side-gate voltage is
zero so that there is no tunneling between that edge and
the antidot. Indeed, as shown in Fig. 2, the dips in the
detector signal become large and sharp when the antidot
constrictions are set to a QH plateau (nc � 2 in this case),
where the antidot states are decoupled from the extended
edge states. Away from the QH plateau, since the states
are coupled to the current leads, electrons’ wave functions
penetrate into the leads, reducing the effective maximum
charge on the antidot and leading to weaker charging, i.e.,
smaller charging energy.

Around B � 3 T, the spin splitting of the peaks be-
comes exactly half the period, and the amplitudes of the
two peaks in each pair become identical, giving what ap-
pear to be h�2e AB oscillations (see Fig. 2) [4,5]. We
have investigated the temperature dependence of both the
charging and conductance signals in this regime. The
Fourier transforms of the charging signal appearing at
around 2.5 T in Fig. 2 and the Gad oscillations at around
2.8 T, measured separately, decrease at different rates [see
Fig. 3(a)]. Thermally broadened Fermi-liquid theory for
sinusoidal oscillations [8] gives a good fit for Gad with an
energy level spacing of 70 meV. The conductance oscilla-
tions are suppressed at high temperature because of thermal
broadening of the edge channels around the side gates at EF
when the thermal energy becomes comparable to the sum
of the SP energy spacing and the charging energy e2�C (if
CB occurs), where C is the total capacitance of the anti-
dot. For the charging signal, since the oscillations are not
sinusoidal, a more detailed model [13] is required than that

FIG. 2. Antidot and detector signals with the antidot voltage
modulated, in the regime of pure h�2e AB oscillations. The
amplitude of the detector oscillations (upper curve) suddenly
decreases at the onset of the oscillations in the antidot circuit
(lower curve).
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FIG. 3. (a) Temperature dependence of the Fourier amplitude
of h�2e oscillations in conductance (not transconductance)
(triangles, B � 2.8 T) and charging (circles, B � 2.5 T). The
amplitudes were calculated by taking the square root of the
Fourier power spectrum integrated around the h�2e peak.
Dashed lines are fits to thermally broadened Fermi-liquid
theory. (b) b (see text) vs T 2 for h�2e (circles) and
h�e (diamonds) AB oscillations. The straight lines are fits.
(c) DEtot obtained from the measurements shown. Filled (open)
symbols correspond to Gad on (below) the nc � 2 plateau,
except for the highest B data which is on the nc � 1 plateau.
Inset: Integral of the detector oscillations. The dashed line is
a fit as described in the text.

used above. Here, we assume that the detector is sensitive
only to thermal excitation which adds or removes electrons
around the antidot, but not to excitation between SP states.

The electrochemical potential of the antidot mad�N , B�
is the energy required to add an electron to the lowest
unoccupied state, which encloses, say, N flux quanta
h�e. Then the probability that thermal excitation moves
an electron from a lead at chemical potential m to that
state is given by the Fermi function f���mad�N , B� 2

m���. For one period 2
DB
2 , B ,

DB
2 , where the center

of the charge transition is at B � 0, the blurred sawtooth
charge oscillation can be written as Dq�B� � 2e�B�
DB 1 f���mad�N , B� 2 m��� 2 1

2 �. Since the charging
energy is parabolic in the net charge, and, hence, varies
as �B 6

DB
2 �2 depending on which state is occupied, it
FIG. 4. Grey-scale plots of dc-bias dependence of the differential conductance of the antidot at various B. The same gate
voltages were used throughout. Dark regions correspond to positions of peaks or dips. The background variation in the signal was
subtracted to increase the contrast.
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can be shown simply that mad�N , B� 2 m � DEtotB�DB,
where DEtot � DE 1 e2�C. Here, DE is the aver-
age energy spacing of adjacent states (of whichever
spin), equal to DEsp�2 when both spins encircle the
antidot; DEsp is the energy spacing of adjacent SP
states of the same spin. For h�2e oscillations, we
assume that a spin-down state lies midway in energy
between spin-up states. For nc # 1, DE � DEsp . Thus
f���mad�N , B� 2 m��� � �1 1 exp�2bB�DB��21, where
b � DEtot�kBT�. Here, T� �

p
T2 1 G2 is the effec-

tive temperature, to account for an intrinsic broadening G

at low temperatures due to the ac excitation voltage and
the finite lifetime of the states. The integral of the detector
signal with respect to B (approximately equivalent to the
integral with respect to 2VG-dot) was fitted to Dq�B�,
after subtracting the background slope [inset of Fig. 3(c)].
From the fit at various temperatures [Fig. 3(b), circles],
we obtained DEtot � 160 meV. We could not measure
the temperature dependence in the region B � 2.8 T
in Fig. 2 due to the small charging signal. However,
a fit to the data at T � 50 mK gave DEtot � 90 meV,
assuming that G does not change. The tempera-
ture dependence of h�e oscillations where nc was just
less than one [B � 4.1 T, diamonds in Fig. 3(b)] gave
DEtot � 140 meV. These energies are plotted in Fig. 3(c)
and will be discussed below.

A further way of measuring the energy spacing is to
apply a dc bias [15]. Figure 4 shows grey-scale plots of
the dc-bias dependence of AB oscillations in the differen-
tial conductance [measured with a 5 mV rms ac (10 Hz)
source-drain voltage in addition to the dc bias], for the
values of nc shown. In 4(a) and 4(b), peaks are shown
in black, since resonant transmission occurs due to inter-
LL scattering [7]. This is not present at higher B; in-
stead, resonant backscattering gives dips [shown in black
in 4(c) and 4(d)]. Figures 4(a)–4(c) show sets of spin-
split resonances. In 4(a), where spin splitting is poorly
resolved, adjacent peaks cross at 250 or 50 mV. As ener-
gies, since this is an addition spectrum, these correspond to
e2�C 1 DEsp 2 EZ and e2�C 1 EZ, respectively, where
EZ is the Zeeman splitting. Thus the average energy
is just DEtot. This enables a comparison of energies at
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various B [see Fig. 3(c)]. At higher B, spin splitting be-
comes obvious [Figs. 4(b) and 4(c)], but the crossings give
similar DEtot.

The dc bias at which states of different spin cross gives
an upper limit for e2�C, and this limit increases with B, as
does EZ. It is likely that the charging energy is small at
low B, since the magnetic confinement is weak; indeed, the
charging signal is hard to see for B , 0.6 T. However, at
B � 1.4 T, in the middle of Fig. 4(c), DEtot drops rapidly
by 30% [open symbol in Fig. 3(c)]. This corresponds to
the field at which the conductance falls off the nc � 2
plateau (for these particular gate voltages). The figure
shows a similar drop (for the gate voltages used in the
temperature dependence described above), around 2.6 T,
also corresponding to moving off the nc � 2 plateau.
Temperature dependences of the conductance and charging
oscillations there confirm the dc bias result. There is no
reason why DEsp should change so suddenly. These drops
occur when the coupling of the antidot to the leads in-
creases, reducing the charging energy, as described above.

In Fig. 4(c), additional parallel lines appear around
the smaller diamonds, offset by 60 mV in dc bias. We
interpret these as arising from tunneling via the first
excited state of the antidot, which is DEsp 2 EZ higher
in energy. Similar lines are not resolved around the larger
diamonds since the spacing is just EZ. The observation of
this excitation spectrum confirms that there is a Coulomb
blockade of tunneling through the antidot.

For a constant potential slope, DEsp should vary as
1�B. At B � 0.35 T, DEtot � 150 meV and e2�C ,

50 meV (the upper limit from the dc-bias measurements),
so 200 meV , DEsp , 300 meV. Thus at B � 1.4 T we
expect 50 meV , DEsp , 80 meV. This is close to the
value DEsp � 100 meV obtained from the addition and
excitation spectra at 1.4 T, which also give EZ � 35 meV,
in good agreement with gmBB with g � 0.44 for electrons
in GaAs. From Fig. 4(c), e2�C � DEtot 2 DEsp�2 falls
from �100 meV on the plateau to �65 meV when the
antidot is coupled to the leads. When on the plateau, e2�C
appears to saturate at �150 meV above B � 2 T, since by
then the states around the antidot are well defined and so
the full 6e�2 charge can build up, with the capacitance
fairly constant. Maasilta and Goldman [9] found from
the line shapes of individual peaks at n � 1 and 1
3 that

DEtot was almost constant, but interpreted this as a self-
consistent variation of the potential slope, with no CB.
In our picture, the constancy of DEtot comes from the
interplay of e2�C and DEsp .

In summary, we have fabricated a charge detector in
close proximity to an antidot. The antidot is seen to
discharge each time a state around the antidot comes onto
resonance, showing that there is a Coulomb blockade of
tunneling via the antidot. We have measured addition
and excitation spectra, confirming this interpretation. The
charging energy drops whenever there is coupling to the
leads, as the charge becomes delocalized. This is the first
conclusive demonstration of charging in an open system.
It arises from the rigidity of the quantum-mechanical wave
function, as for an electron in an atom. It must form part
of the explanation for the pure h�2e AB oscillations [4].

This work was funded by the U.K. EPSRC. We thank
C. H. W. Barnes and C. G. Smith for useful discussions.
M. K. acknowledges financial support from Cambridge
Overseas Trust.

*Present address: The Technology Partnership PLC,
Melbourn Science Park, Melbourn SG8 6EE, United
Kingdom.

[1] C. Pasquier et al., Phys. Rev. Lett. 70, 69 (1993); C. H.
Crouch et al., Superlattices Microstruct. 20, 377 (1996).

[2] S. M. Cronenwett et al., Phys. Rev. Lett. 81, 5904 (1998).
[3] C. T. Liang et al., Phys. Rev. Lett. 81, 3507 (1998).
[4] C. J. B. Ford et al., Phys. Rev. B 49, 17 456 (1994).
[5] A. S. Sachrajda et al., Phys. Rev. B 50, 10 856 (1994).
[6] V. J. Goldman and B. Su, Science 267, 1010 (1995).
[7] D. R. Mace et al., Phys. Rev. B 52, R8672 (1995).
[8] J. D. F. Franklin et al., Surf. Sci. 361���362, 17 (1996).
[9] I. J. Maasilta and V. J. Goldman, Phys. Rev. B 57, R4273

(1998).
[10] M. W. C. Dharma-Wardana, R. P. Taylor, and A. S.

Sachrajda, Solid State Commun. 84, 631 (1992).
[11] A. Sachrajda et al., Surf. Sci. 305, 527 (1994).
[12] M. Field et al., Phys. Rev. Lett. 70, 1311 (1993).
[13] C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).
[14] M. Field et al., Phys. Rev. Lett. 77, 350 (1996).
[15] E. B. Foxman et al., Phys. Rev. B 47, 10 020 (1993).
163


