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Self-Organization in the Two-Dimensional Kelvin-Helmholtz Instability
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The evolution and relaxation of an initial shear flow subject to the Kelvin-Helmholtz instability are
investigated via two-dimensional compressible hydrodynamic simulations and the calculus of variations.
During the instability evolution the total kinetic energy remains almost constant, but the enstrophy
decays rapidly by the selective dissipation with the artificial viscosity. The successive vortex pairings
lead to the emergence of an isolated vortex and the initial shear flow relaxes toward a self-organized
state, i.e., a nearly minimum enstrophy state in the incompressible fluid.

PACS numbers: 47.27.Eq, 05.65.+b, 47.20.Ft, 47.32.Cc
The Kelvin-Helmholtz (KH) instability excited by the
velocity shear in fluid is a ubiquitously observed phenome-
non in fluid dynamics. Although a real fluid is three di-
mensional (3D), the two-dimensional (2D) approximation
of the flow is valid in many geophysical and astrophysical
applications [1]. Therefore, the study of the 2D KH insta-
bility has been a subject of intensive experimental [2] and
numerical [3] studies. In particular, the pairing of vortices
appearing in the nonlinear stage of the KH instability [2]
has been studied quite intensively because of its relevance
to the observation of the emergence of ordered structures in
the fully developed 2D shear layers for small Mach num-
bers [4] and for supersonic shear layers [5]. The purpose
of this paper is to show by 2D compressible simulations for
small Mach numbers that an initial shear flow subject to the
KH instability evolves and relaxes by the successive pair-
ings of vortices toward a self-organized state, i.e., a nearly
minimum enstrophy state, which is obtained with the cal-
culus of variations by assuming the constant total kinetic
energy and the incompressibility. The self-organization in
the continuous media in the present study [6] is the forma-
tion of ordered structure and specifically means the relax-
ation to the minimum enstrophy state [6].

The cascade of the turbulent flow to large scales owing
to the enstrophy cascade to large wave numbers was
shown numerically [7]. Numerical simulations of the 2D
turbulent flows have also shown that isolated coherent
vortices emerge in the turbulent flow by the merger of like-
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sign vortices [8]. The importance of the selective decay
conjecture, i.e., the decay of the enstrophy while nearly
conserving the total kinetic energy in the 2D turbulence,
has been discussed [9]. The selective decay conjecture was
confirmed by numerical simulations of 2D incompressible
turbulence by calculating a sequence of the wave-number
spectra of the total kinetic energy and the enstrophy [10].
In spite of these intensive studies on the 2D turbulence
[1] of externally given vortices the nonlinear evolution
of vortices spontaneously generated by the KH instability
has not been studied from the point of self-organization
[6]; the only exception is a recent experimental study
using magnetized electron columns, which follow the same
dynamics as 2D incompressible fluids, on the relaxation
of 2D turbulence arising from the KH instability toward a
meta equilibrium near the minimum enstrophy state [11].

The equation of fluid motion can be written as
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where r, v , and p are the mass density, the bulk velocity,
and the pressure, respectively. The last term in the right-
hand side (r.h.s.) of (1) represents the viscous dissipation
due to the artificial viscosity, which is implicitly included
in the numerical scheme [12]. For simplicity, let us
assume that h is constant in space and time. From (1)
we obtain the following general conservation equation of
the enstrophy [13] in the 2D configuration:
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where V � === 3 v , and n � h�r is the kinematic vis-
cosity. In (2), C represents a region in the x-y plane
with 2xb # x # xb and 0 # y # Ly , and A represents
the surface surrounding the volume V , which consists
of a region with 2xb # x # xb , 0 # y # Ly , and 0 #

z # 1.0. We assumed, as is also assumed in the follow-
ing 2D simulations, that all physical quantities are inde-
pendent of z and are periodic in the y direction, e.g.,
v�x, y � 0� � v�x, y � Ly�, and that yx and derivatives
with respect to x of the remaining quantities �r, yy , p�
vanish at x � 6xb .

A 2D simulation of the KH instability is performed in
the x-y plane for an initial velocity profile of y0y�x� �
�V0�2� �1 2 tanh�x�a�� and for a convective sound Mach
© 1999 The American Physical Society



VOLUME 83, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 23 AUGUST 1999
number �MSC � 0.5V0�CS� [14] equal to 0.25, where CS

is the sound speed. Time t is normalized by 2a�V0.
For this configuration, the linearly fastest growing mode
occurs at 2kya � 0.8 with its growth rate equal to
0.17V0�2a [15]. Therefore, the wavelength of the linearly
fastest growing mode lFGM is nearly equal to 15.7a. The
length Ly of the periodic simulation box in the y direction
is equal to 8 3 lFGM � 125.6a and we use xb � 40a. A
random incompressible velocity perturbation with its peak
amplitude of yx equal to 0.005V0 is given as an initial
seed perturbation. A two-step Lax-Wendroff scheme is
used in solving the ideal compressible hydrodynamic
equations, and the number of grid points is equal to
400 3 400. The artificial viscosity n in that scheme is
given by n � V 2

0 Dt�2 [12], where Dt is the time step
used in the simulation.

Figure 1 shows temporal evolutions of the total energy
(dotted line), the total internal energy (dashed line), and
the total kinetic energy (solid line) integrated in the whole
simulation region. Each energy is normalized by
0.0628a2p0, where p0 is the initial uniform pressure.
The total kinetic energy remains almost constant during
the simulation run. The difference of the total energy at
T � 600 from the initial total energy is only 1% of the
initial total energy.

Figure 2 shows temporal evolutions of the total square
vorticity (enstrophy) integrated in the whole simulation
region (solid curve), the contribution to the change of the
total square vorticity due to the compressibility (dotted
curve), and the baroclinic contribution [coming from the
second term in the r.h.s. of (2)] to the change of the total
square vorticity (dashed curve), which are normalized
by V 2

0 . After T � 40, the enstrophy decreases rapidly
with time with a small oscillating component, which is
due to the compressibility [coming from the first term in
the r.h.s. of (2)]. Therefore, from Eq. (2) we conclude
that the enstrophy, which is a global invariant in the 2D,
inviscid, and incompressible fluid, decreases rapidly with

FIG. 1. Temporal evolutions of the total energy, the total
internal energy, and the total kinetic energy integrated in the
whole simulation region.
time due to the selective viscous dissipation [9] by the
implicit artificial viscosity.

Figure 3 shows contour lines of the z component
of the vorticity Vz at six different times from T �
0 to T � 600. In all panels the contour lines are
plotted for negative vorticity (counterclockwise rotation).
In the early phase an initial straight vorticity layer
(velocity shear layer) develops into a vortex train at
T � 60. Eight vortices appear as predicted by the linear
theory. After T � 60, neighboring vortices begin to
merge after counterclockwise rotation around each other.
The successive pairings of vortices lead to the emergence
of a single isolated vortex after T � 400.

Figure 4 shows the spectral amplitudes of the kinetic
energy versus the wave number in the y direction at
(a) T � 0 and (b) T � 600, and the spectral amplitudes
of the enstrophy versus the wave number at (c) T � 0
and (d) T � 600. Each spectral amplitude is calculated
by taking Fourier spectrum in the y direction at fixed x
and then by taking the integral along x. The spectral
amplitudes of the kinetic energy and the enstrophy are
normalized by 2ap0 and �V0�2a�2, respectively. In this
figure, kmin is the wave number equal to kFGM�8, where
kFGM � 2p�lFGM. Figures 4(a) and 4(c) show that the
spectral distributions of the kinetic energy and enstrophy
at T � 0 are almost flat (nearly white noise). However, at
T � 600, the spectral distributions of the kinetic energy
and the enstrophy are well represented by power law
distributions at k�kmin , 70. The spectral peak at k �
kmin at T � 600 of the kinetic energy occurs because of
the inverse energy cascade. The power law exponents
of the kinetic energy and the enstrophy at medium
subrange of the wave number from k�kmin � 10 to 50
at T � 600 are equal to 23.50, which is close to the
value obtained by Zabusky and Deem [3] and Lesieur
et al. [3], and 21.35, respectively. This large difference
of the power law exponents causes the selective enstrophy
decay [9].

FIG. 2. Temporal evolutions of the total square vorticity
(enstrophy), the contribution of the compressible term to the
change of the total square vorticity, and the contribution of the
baroclinic term to the change of the total square vorticity.
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FIG. 3. Temporal evolutions of the contours of the z component of the vorticity at six different times from T � 0 to T � 600.
The present results show that the total kinetic energy
W remains relatively invariant, but the enstrophy U
decays rapidly by the selective decay [9] during the evo-
lution of the instability. Therefore, the appropriate varia-
tional principle describing the present self-organization is
dU 2 ldW � 0 [6]. By assuming the incompressibility
(constant density) and using the boundary condition in the
present simulation, this is reduced to the equation

=== 3 === 3 v � lv , (3)

which describes the minimum enstrophy state [6]. From
(3) we obtain

l �

R
C V2 dx dyR
C y2 dx dy

. (4)

By introducing the stream function c�x, y�, we obtain the
eigenmode solution of (3) as

c�x, y� � c0 cos�kxx� sin�kyy� , (5)

with the eigenvalue

l � k2
x 1 k2

y , (6)

where c0 is a constant. For the minimum l or mini-
mum enstrophy state, we obtain kx � p��2xb� and ky �
2p�Ly . Therefore, the minimum eigenvalue lmin obtained
theoretically from (6) is equal to 0.00404�a2. On the
other hand, by assuming that r is constant, we can cal-
1588
culate l from (4) by using values of the total kinetic
energy and the total square vorticity obtained by simu-
lations. At the final state T � 600 we obtain lsim �
0.00298�a2 from the simulation results. Simulation runs
were also done for less compressible cases with MSC �
0.125 and 0.0625 and it was found that, for both cases,
the selective decay occurred and the single isolated vor-
tex appeared before T � 600. The Reynolds numbers Re

defined by the artificial viscosity as Re � 2aV0�n are 128,
128, and 256 for MSC � 0.25, 0.125, and 0.0625, respec-
tively. We obtained lsim � 0.00347�a2 and 0.00356�a2

at T � 600 for MSC � 0.125 and 0.0625, respectively.
Therefore, lsim approaches lmin as the Mach number de-
creases. Thus, the 2D vortices generated by the KH in-
stability for small Mach numbers relax toward the nearly
minimum enstrophy state in the incompressible fluid.

It is important to notice that vortex structures seen at
T � 60 600 in Fig. 3 in the present nonequilibrium sys-
tem with flow seem to be dissipative structures emerging
in nonequilibrium open systems [16], because the local
region surrounding each vortex is open to the flow from
outside, although the whole simulation system is periodic
and is not an open system.

In summary, the observed irreversible relaxation of the
initial shear flow subject to the KH instability toward a
nearly minimum enstrophy state by the selective decay
presents evidence that the successive pairings of vortices
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FIG. 4. The spectral amplitudes of the kinetic energy versus the wave number in the y direction at (a) T � 0 and (b) T � 600.
The spectral amplitudes of the enstrophy versus the wave number at (c) T � 0 and (d) T � 600.
occurring in the nonlinear stage of the 2D KH instabil-
ity is a self-organization process [6]. This indicates that,
although the KH instability is essentially an inviscid phe-
nomenon, the self-organization or the successive pairings
of vortices in the nonlinear stage occurs due to the pres-
ence of a finite viscosity, which leads to the selective de-
cay of the enstrophy.
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