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The threshold recombination coefficient for three bosons whose two-body scattering length a is
positive and large compared with the nominal range of the potentials is shown to proceed via a crossing
of hyperspherical adiabatic potential curves at R � 2.6a. The hidden crossing theory gives a simple
expression for the rate in terms of the scattering length and a phase D. The phase depends upon the
details of the interaction, and varies from species to species, however an upper limit to the rate which
depends only upon the scattering length emerges from the hidden crossing theory.

PACS numbers: 34.10.+x, 34.80.Dp
One of the main issues in Bose-Einstein condensation
is the systematics of three-body recombination rates.
A Bose condensate of some atoms, say B, is not the
lowest energy state but a metastable state, where the
atoms are so far apart that they interact weakly. Such
systems can fall into lower energy states, i.e., clusters
of atoms, by recombination. Usually the main loss is
due to recombination to dimers, B2. Such recombination
cannot occur by simple two-body reactions. Something
has to carry away the extra energy and momentum. At
the very low energies of Bose condensates, this will
usually be a third atom. The important process is thus
B 1 B 1 B ! B2 1 B.

An experimental treatment of recombination in a Bose
condensate is described by Inouye et al. in [1], where
they have succeeded in adjusting the two-body scattering
length, a, by adjusting the magnetic field near a Feshbach
resonance. This follows the normal trends in the theories
of Bose condensates, where the only parameter from the
two-body potential is indeed the scattering length. Sev-
eral papers have dealt theoretically with the connection
between scattering length and the recombination rate [2,3]
based upon numerical calculations for a series of simi-
lar potentials with different scattering length. Fedichev
et al. [4] propose an a4 law. The aim of this paper
is to investigate this dependence further and to give a
simple intuitive understanding of the fundamental process
of recombination.

We do this by approximating the two-body interaction
by a zero-range potential which is defined by the scatter-
ing length alone. It has been known since 1935 that the
corresponding three-body system will have infinitely many
bound states [5]. The same problem occurs in conven-
tional coupled channel calculations for three-body states
where the same singularity occurs at the origin.

Many attempts have been made to work around this
problem by adding some sort of cutoff to the potential.
Bedaque et al. have added a three-body interaction that
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acts as a renormalization of this singularity [6]. This
paper shows that such cutoffs contribute to the transition
probability as significantly as they do to binding energies
and elastic atom-dimer scattering.

We clarify the theory by treating the problem in hy-
perspherical coordinates and applying the hidden crossing
theory [7]. Hyperspherical hidden crossing theory has
only been applied to three-body systems with Coulomb
interactions [8]; thus another aim of this paper is to show
that hidden crossing theory does indeed give good results
for short range potentials, at least in the region where a is
much larger than the nominal range of the potential.

Configuration space for three particles in the center of
mass system is six dimensional. Hyperspherical theory
uses one coordinate R, with dimension of length, called the
hyperradius, and five dimensionless angular coordinates.
In the adiabatic hyperspherical representation one fixes R
and solves the angular part of the Schrödinger equation
first to obtain a complete set of adiabatic channel functions
and eigenvalues ´n�R�R2. The eigenvalues ´n�R� are the
channel potentials of the hyperspherical close-coupling
theory.

Figure 1 shows these channel potentials ´n�R� for a sim-
ple model of three helium atoms. In this case we have
approximated the diatomic interactions between the atoms
with a simple Gaussian potential, which was fitted to have
the same scattering length, a � 189.05 a.u., and effective
range, reff � 13.84 a.u., as the more realistic LM2M2 pair
potential [9,10]. It is known that the three-body binding
energies using these simple potentials differ by only 20%
from those obtained from much more complicated calcu-
lations using the full LM2M2 pair potential [10]. This ac-
curacy is sufficient for the purpose of this paper.

The asymptotic value of the lowest potential equals
the two-body binding energy E0 � 24.15 3 1029 a.u.
The lowest channel thus asymptotically corresponds to
two atoms bound in a dimer and the third atom far
away. The second channel corresponds to a three-body
© 1999 The American Physical Society
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FIG. 1. The adiabatic hyperspherical potentials for three 4He
atoms modeled by Gaussian pair potentials. The units are
atomic units.

continuum state, i.e., all three atoms are far away from
each other. The angular wave function is asymptotically
a constant. The second channel contains a centrifugal
barrier 15

4 R22 which is expected to suppress the transition
for low energies. The third channel, which we do not
use here, contains a centrifugal barrier �32 1

15
4 �R22

which suppresses its contribution at low energies. Similar
remarks hold for higher channels.

The S matrix can now be calculated by integrating
from the origin and fitting to incoming and outgoing
waves at some large hyperradius. This is the traditional
coupled channel calculation, which is not often conducive
to general insights. From the S matrix, the breakup cross
section is calculated by the usual formula,

s�B2 1 B ! 3B� �
p

k2 jS12j
2, (1)

where k is the wave number of the relative motion between
the dimer and the unbound atom before the collision. The
rates for recombination depend upon the distributions in
the gas or condensate [2,4,11]. We employ the coefficient
arec of Ref. [4]. Rewriting their Eq. (3) in terms of the S12
using Eq. (1) and detailed balance gives, in the very low
temperature limit where all particles have zero energy, the
coefficient

arec � 2�2p�233�2 lim
E!0

jS12�E�j2

E2 m2

h̄2 a4
3

h̄
m

a4, (2)

where the limit can be taken because jS12�E�j2 ~ E2 at
threshold.

Hidden crossing theory is derived using asymptotic
approximations [8] which give the WKB form in the
complex plane of the coordinate R:

c�R� � K�R�1�2 exp

µ
6i

Z R

dR0 K�R0�
∂

, (3)

where K�R� �
p

E 2 e�R� 2 1��4R2�. The units are
chosen such that h̄ � 1 and the mass of the atoms
is 1. Notice that we include the Langer correction
1��4R2� in our expression for K�R�. This factor emerges
automatically in the hidden crossing theory, and is known
to be essential for the correct threshold dependence on E.
Its use for short-range potentials at energies well above
the threshold energy is somewhat questionable, however,
for consistency we use the correction at all energies.

It is clear that no transitions can be calculated unless
the integration contour can connect different channels.
This can be done by extending e�R� to be a multivalued
function in the complex plane which, in the zero-range
model, can be done nearly analytically [12]:

e�R� � �n2 2 1�4��R2, (4)

where n is given as the solution(s) to

R � a�n cos�np�2� 2
8
p

3
sin�np�6���sin�np�2� ,

(5)

with a being the scattering length of the interaction.
The function ´�R� is plotted in Fig. 2. There is a

square root branch point at Rb � �2.5918 1 2.9740i�a. A
contour going around this point will go from the lowest
surface to the second surface. This is equivalent to a
square root which changes sign if continued to a path
around its zero in the complex plane. Going around the
branch point twice brings the function back to its starting
value.

We seek the S-matrix element between the lowest and
second channel. Thus the contour starts from R � 1`

on the lowest surface, goes in along the real axis, out
into the complex plane, around the branch point and
back to the real axis on the second surface. We then
integrate up to the classical turning point on the second
sheet and out again to R � 1` with the opposite sign in
the exponential. This contour is shown in Fig. 2. This
contour, however, is not sufficient. We also need the path
which goes around the classical turning point on the first
sheet before going around the branch point [8].

FIG. 2. The complex energy surface for the zero-range model
with two-body scattering length a showing a branch point at
R � �2.5918 1 2.9740i�a. The heavy curve is one of the paths
that contribute to the transition probability between the states in
the hidden crossing theory.
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By adding the two contributions it is seen that the
transition probability is given by

P�E� � 4 exp�2S� sin2�D�2� , (6)

where

S � 2 Im
Z

c
dR K�R� , D � 2 Re

Z
c

dR K�R� ,

(7)

and the contour c goes from the turning point on the
lowest sheet, outward along the real axis, around the
branch point to the real axis on the second sheet, and
then along the real axis to the turning point on the second
sheet. The part of the integral along the real axis is real
when the turning points occur at distances smaller than
the real part of the branch point. Thus, only the part that
goes around the branch point to connect the two sheets
contributes to S. The quantity D can be interpreted as the
phase difference between the two paths. At low energies
the turning point on the upper surface lies outside the real
part of the branch point. In this case we get a contribution
that gives rise to the power law near threshold. Note that
our expression agrees with standard formulas [13].

For the zero-range model the lowest sheet diverges
near R � 0 as 21.26R22 [12]; i.e., there is no turning
point and the real part of the integral, D, diverges. The
imaginary part S is, however, finite and can be calculated.
Thus the zero-range prediction is

P�E� � C0 exp�2S� , (8)

where C0 is some positive number less than 4 but
indeterminable by the zero-range model. If one averages
over all possible phases D, an estimate is C0 � 2, but
that is very approximate. To improve D we need finite-
range potentials to obtain a turning point. If the scattering
length is much larger than the range of the potentials,
the energy surfaces are approximately the same as for the
zero-range model for R much larger than the range of the
potentials.

If by some means, for instance, by magnetic fields
[1], one adjusts the potentials slightly around the point
where the scattering length is infinite, the energy surface
does not change very much for small R. In such a
variation the low-energy turning point is fixed. Also, the
channel potential behaves as 21.26R22 for R1 , R , R2
between a radius R1, of the order of the range of the
potential, and a radius R2, of the order of the scattering
length [10,12]. The contribution to the phase from the
region R , R1 is independent of the tuning as is the
contribution from R2 , R at zero energy. We thus have,
at E � 0,

D � 2
Z R2

R1

s
1.01
R2 dR 1 D � 2.01 ln

a
R1

1 D0 , (9)

where D and D0 are constants. If the scattering length
is tuned as in [1], the zero-energy phase shift behaves as
1568
ln�a� and minima occur as the scattering length increases
by integral multiples of exp�p�1.01�.

To get a realistic calculation we used the Gaussian
model potential of the 4He-4He interaction to compute
the energy surfaces along the real axis (Fig. 1), but
used the zero-range model off the real axis (Fig. 2) to
compute S�E� and a small contribution to D. We found
that the phase D�2 crosses 3p at E�E0 � 1.4. The
transition probability has a sharp minimum at this point
due to destructive interference between the two paths.
This minima is a manifestation of Stuekelberg oscillations
known from atom-atom scattering [13].

In Fig. 3 the simple zero-range prediction with C0 � 4
along with the hybrid zero-range and Gaussian model is
compared with the coupled channel result for the Gaussian
potential model. The hybrid model, including the Langer
correction, matches the coupled channel results very well
over the whole energy range, except near the Stuekelberg
minimum, which is shifted to lower energies. If we
omit the Langer correction, the resulting cross section is
in error at the lower energies, but gives a surprisingly
accurate position of the interference minimum. Removing
the Langer correction makes the effective potential more
attractive and increases the value of the phase. This
increase shifts the minimum to higher energy, in agreement
with the coupled channel calculations. It should be noted
that there are other contributions to the hidden crossing
phases that are sometimes included [13] and would also
change the position of the Stuekelberg minimum.

The hidden crossing theory shows that the transition
probability factors into two terms, namely, the factor
exp�2S�E��, which depends only upon the scattering
length and is a universal function of E�E0 � Ea2, and the
factor sin2D�2, which depends mainly upon a phase inte-
gral along the real axis from the turning point to the real
part of the branch point Rb � 2.6a. The magnitude of
this latter function is, therefore, strongly dependent upon
the details of the interaction. It is thus not possible to give

FIG. 3. The transition probability for the reaction 4He 1
4He 1 4He ! 4He 1 4He2. The solid line is the coupled
channel result, the short dashed curve is Eq. (8) with C0 � 4,
the intermediate dashed curve is the hidden crossing result
[Eq. (6)] with the phase D calculated using the potential curves
in Fig. (1), and the long dashed curve is with the Langer
correction omitted.
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a universal expression for the breakup or recombination
probability. Clearly, Eq. (8) with C0 � 4 gives an upper
bound to the probability for recombination which depends
upon a but is otherwise independent of the details of the
potentials.

Our expression, Eq. (6), also shows that any cutoff
scheme based on a three-body potential redefines D and
thus redefines the transition probability to any value be-
tween 0 and 4 exp�2S�. That is not to say that a cutoff
scheme must fail, but that the cutoff must be compensated
by other observables which strongly depend on the posi-
tion of the classical turning point in the lowest curve, in
accordance with the conclusion of Bedaque et al. [6].

We can now give arec of Eq. (2). Almost by inspection
it follows from Fig. 3 that P�E� � A�Ea2�2 with A �
0.018 and 0.013 for the coupled channel and hybrid
models, respectively. Our best estimate is A � 0.018 so
that the recombination coefficient is

arec � 2�2p�23
p

3 A
h̄
m

a4 � 7.386
h̄
m

a4. (10)

For the zero-range model we can only compute an upper
limit since D is undefined. We find A � 0.167, which
is a universal constant independent of the details of the
potential. The upper limit on the recombination rate is

arec # 68.4
h̄
m

a4. (11)

This is also an upper limit for realistic interactions, where
the scattering length is much larger than the nominal
range of the two-body potential since it corresponds to
the replacement of sin2�D�2� by its maximum value.

Fedichev et al. found the rate to be arec � 3.9 h̄
m a4

with a much simpler but less transparent model [4].
Their rate is less than our upper limit, as it should
be, but is also a factor of 2 smaller than our coupled
channel calculations. This disagreement probably reflects
the extreme sensitivity of the cross section to the phase,
since the phase is close to an integral multiple of p .

For negative scattering length we expect an even
stronger dependence upon the shape of the potential.
In this case there are no two-body bound states in a
zero-range model and the surface will only contain sheets
corresponding to three-body channels. Transitions from
three-body to two-body states cannot occur in the region
of large R where the zero-range model applies but only
at small R, where the complex energy surface directly
depends upon the shape of two-body potentials. On
the lowest sheet corresponding to three-body breakup,
however, there is a repulsive barrier at large distance [3].
This repulsive potential behaves as 15

4 R22 which, with the
Langer correction, gives a tunneling probability behaving
as m2h̄24a4E2. Therefore the recombination rate will
also be proportional to a4 but the proportionality constant
is unknown.

The general behavior of the three-body recombination
rate or the breakup probability can be estimated to within
a factor of the order of 1 using only the scattering length.
However, that factor is given by the sine of a phase
which depends on the details of the two-body potentials.
In certain cases the factor might even be much smaller
than 1 over a small energy range due to Stuekelberg
oscillations. This could be important if the minimum
occurs near the threshold. But if this phase is calculated
on the basis of the more detailed information from the
potential, the hidden crossing theory does predict the
transition probability very well.

We have used the hidden crossing theory to obtain
an upper limit arec that depends only upon the two-
body scattering length when the length is positive and
much greater than the nominal range of the potentials.
In this sense, one can estimate the effect of tuning the
scattering length as in Ref. [1]. The zero-energy phase
does depend upon the actual shape of the potentials, but in
the region of infinite scattering length it diverges as ln�a�.
We have shown that this phase has a profound effect on
the magnitude of the recombination rate; thus the phase
change must be included in a more complete theory of
magnetic tuning of recombination rates.
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