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Selective Control of Electrons in Quantum Wires Formed by Highly Uniform
Multiatomic Step Arrays on GaAs(331) Substrates
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Coherently aligned, multiatomic step arrays on GaAs(331) substrates generate a periodic array
conductive quantum wires in a two-dimensional (2D) electron gas. A small number of wires is select
by superimposing a constriction with independent side-gate control. By tuning the gate-voltage windo
wires can be selected one by one. The resulting oscillatory current transmission provides a n
functionality by switching between spatially separated electron channels. The wires are coupled b
small number of 2D electrons resulting in orders of magnitude reduced conductance perpendicula
the step edges.

PACS numbers: 73.23.–b, 73.61.Ey
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Semiconductor quantum wires (QWRs) with width
#100 nm have been widely investigated because of th
unique electrical and optical properties, which have a pr
found impact on basic physics as well as device app
cations [1,2]. Novelin situ growth techniques allow for
further developments in the fabrication of dense arrays
QWRs and dots with lateral periodicities of several 10 n
[3,4]. One major advantage in implementing these arra
in future device concepts is the increased current for m
tiple wires acting in parallel and the related averaging ov
conductance fluctuations due to defects to provide a w
defined output signal [5]. In addition, a higher function
ality can be achieved by selective electrical access to
distinct single QWR within the array, which allows fo
adding, subtracting, and coupling of one-dimensional (1
conducting channels.

Previous approaches for the formation of dense arra
of QWRs rely on the accumulation of monolayer hig
step and terrace arrays on vicinal substrates [4,6,7]. Ho
ever, the high density of kinks and the meandering
the step edges, which cannot be avoided for monola
high steps, are to a large extent transferred to the m
tiatomic step arrays (MSA) resulting in pronounced fluc
tuations in the height and a large number of step crossin
limiting the effective length of the wires. The conductanc
along the wire array between two macroscopic conta
thus includes frequent transitions of carriers from wire
wire, which reduces the conductance and increases c
ductance fluctuations.

We have recently fabricated highly uniform MSA
which are formed along�11̄0� on high-index GaAs(331)
surfaces by atomic-hydrogen-assisted molecular beam
taxy [8]. The MSA exhibit a lateral periodicity of 250 nm
and are straight over distances.10 mm with minimized
height fluctuations. This high structural perfection
related to the microscopic surface structure, which is co
posed of (110) terraces and (111) steps of similar si
resulting in a higher stability against kink formation dur
ing step bunching [9]. The step height can be tuned in
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wide range up to 13 nm by the substrate temperature wh
maintaining the lateral periodicity.

We utilize the MSA as a template for the forma
tion of dense arrays of conductive QWRs by transfe
ring the periodic surface corrugation to the interface
Si modulation-doped GaAs�Al 0.3Ga0.7As heterostructures.
The two-dimensional (2D) electron transport is highl
anisotropic indicating a large anisotropy in the potenti
and charge distribution. In a sample with a 6 nm hig
MSA having an electron mobility along the step edge
of 22 m2 �V s�21 for an average 2D electron density o
3 3 1015 m22, the conductivity ratio parallel and perpen
dicular to the step edges is larger than ten [8]. Howev
the microscopic picture of the conductance asymmetry
not revealed in such measurements and has been, ind
controversially discussed for similar systems [4].

In this paper, we address this problem by investiga
ing the conductance in submicrometer wide constriction
which are defined in corrugated GaAs�Al 0.3Ga0.7As (331)
modulation-doped heterostructures. Our goal is to achie
selective electrical access to single QWRs within the a
ray and to investigate their coupling to the surroundin
2D reservoir. The constrictions are electrostatically d
fined by metallic side gates, which are inserted in 40 n
deep trenches fabricated by electron-beam lithography a
wet chemical etching. The 2DEG is located 85 nm b
low the surface with a spacer layer of 22 nm. The ele
tron gas underneath the gates is almost depleted at z
bias. Two constrictions separated by20 mm are aligned
parallel and perpendicular to the step edges within a co
ventional Hall bar. All measurements are performed b
the four-terminal technique with the Ohmic contacts bein
far from the constriction for full carrier equilibration. The
geometrical width of the constrictionsWli amounts to 300–
500 nm in different samples, thus containing 2–3 straig
step bunches. The two side gates are biased separa
to independently control the width of the constrictionWef
as well as its lateral position insideWli. The geometric
lengthLli of the constrictions (1 2 mm) is much smaller
© 1999 The American Physical Society
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than the average length of the straight steps enabling quasi-
ballistic transport in the parallel configuration. The lateral
layout of the structure is schematically shown in the insets
of Figs. 1(b) and 1(c).

The conductance parallel to the MSA shows distinct
steps, which persist up to 10 K and are reproducible after
temperature cycles up to room temperature, thus proving
quasiballistic transport [10]. The conductance as a func-
tion of the right-side gate voltage UR is shown in Figs. 1(a)
and 1(b) for several left-side gate voltages UL. The gate
lengths Lli are 2 and 1.2 mm, respectively. The steps can
be clearly distinguished from the weak, superimposed uni-
versal conductance fluctuations originating from inhomo-
geneous impurity distribution [11]. The changes of the
steps with UL, marked by the dashed lines, indicate spa-
tially separated wires, which carry the current indepen-
dently. This is confirmed by the steplike decrease of the
steps with UL in the gate-voltage region between 20.8 and
20.5 V [cf. Fig. 1(b)], when the right-side wire becomes
depleted in the presence of the changing parallel conduc-
tance of the left-side wire. Hence, we conclude that the
conductance steps arise from the 1D conductance of sev-
eral parallel conducting QWRs. However, the height of
some of the conductance steps deviates from integer mul-
tiples of the 1D quantized conductance value 2e2�h, which
will be discussed in more detail below. In contrast to the

FIG. 1. Wire conductance in a constriction for (a), (b) current
parallel and (c) perpendicular to the step edges vs right-side
gate voltage UR recorded at 0.3 K. In (a) Lli � 2 mm, while
in (b) and (c) Lli � 1.2 mm. The parameter is the left-side
gate voltage UL. Note that the conductance scale in (c) is
expanded by a factor of 10.
observed quasiballistic transport, the mean free path, cal-
culated to a first approximation from the bulk mobility, is
not much larger than the constriction length. However,
for the 2D conductivity in large area samples, one has to
consider the rigorous carrier scattering from wire to wire
due to their finite length, giving a strongly reduced mean
free path compared with the ballistic scattering length of
carriers in the wires.

The conductance perpendicular to the step edges is
much lower than the parallel one as shown in Fig. 1(c).
Note the different scales of Figs. 1(a), 1(b), and 1(c).
Moreover, the absolute value of the pinch-off voltage
Upo, at which the width of the depletion layer dde is
equal to Wli, is significantly smaller for the perpendicu-
lar configuration (U�

po � 20.8 V) than for the parallel one
(Uk

po � 22.1 V , Upo is determined by a linear extrapo-
lation of the gate-voltage dependence of the conductance
to zero). This difference is directly related to the periodic
modulation of the carrier density in the wire array and indi-
cates the existence of regions of small 2D electron density
between the wires, which exhibit a wider depletion zone.
Additionally, due to the density modulation, Wef becomes
modulated resulting in enhanced side-wall scattering.

Further insight in the 1D conductance of the wires is
obtained from Shubnikov–de Haas (SdH) oscillations in
magnetotransport experiments. The normalized resistance
vs magnetic field B is shown in Fig. 2(a) for different
UL marked by A, B, and C at fixed UR . The traces ex-
hibit two SdH oscillation periods with the minima denot-
ing the corresponding Landau-level (LL) indices L1 and
L2. While both periods are present for the conductance
plateau A, at the plateau C only one period L1 remains,
indicating the depletion of one of the two QWRs. This
confirms the independent conductance along the parallel
wires. The dependence of the LL index L1 on the inverse
magnetic field 1�B is shown in Fig. 2(c). The clear de-
viation from the linear dependence for smaller magnetic
fields proves 1D confinement of the electron states [12].
Note that the period L1 is present also in the other traces,
and the deviation appears for all values of UL indicated
in Fig. 2(b). The onset of the deviation of the LL index
L1 from a linear dependence corresponds to an electron
cyclotron diameter RC � h̄

p
2pn2DEG�eB being compa-

rable to the effective wire width Wwi, which is estimated
to be 90 6 20 nm irrespective of the conductance value.
Therefore, we interpret Wwi as the average width of an
individual conducting wire. The carrier density inside the
wire nwi � �3.5 5� 3 1015 m22 is estimated from the lin-
ear part. This estimate is not very accurate due to the rather
small number of LL indices. However, nwi is clearly larger
than the average large-area 2D electron density in agree-
ment with the lateral density modulation across the steps.
The number of conducting 1D channels N in this wire is at
least equal to or larger than the largest observed LL index
of 5 in the SdH experiment, which coincides with N calcu-
lated from the wire width according to N � int�kWel�p�
157
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FIG. 2. (a) Normalized resistance vs magnetic field recorded
at 0.3 K for three different left-side gate voltages UL.
The curves are shifted by 0.1 with respect to each other.
(b) Conductance in a constriction for the current parallel to the
step array vs UL for the right-side gate voltage UR � 20.5 V
recorded at 0.3 K. The voltages A, B, and C correspond to
the values of UL for the curves shown in (a). (c) Landau-
level (LL) index vs inverse magnetic field for the different
curves in (a).

(k2 � 2pnwi) giving N � 4 5. This corresponds to a
confinement energy of about 5 meV. The corresponding
measured conductance of 1–2 in units of 2e2�h provides
an estimate of the ensemble averaged transmission proba-
bility T � 0.25 0.5 as defined from the generalized equa-
tion G��2e2�h� � N 3 T . This value does not change
with the constriction length up to Lli � 2 mm. It is thus
attributed to backscattering of electrons in a QWR, whose
length eventually exceeds Lli. This larger guiding length
results from imperfect coupling of the corresponding wire
to the outer reservoir due to the presence of the interface
corrugation over the whole sample area. The transition
from the wire to the reservoir can be characterized by the
length l2D , over which the 1D electrons are scattered into
the 2D states. If l2D exceeds the backscattering length lb

for the electrons in the QWR, the guiding length of the
electrons increases to a length larger than Lli, and the trans-
mission will be reduced as T � 2��1 1

p
1 1 2l2D�lb �,

according to a simple rate equation analysis [13]. For our
system, we estimate the ratio l2D�lb to be �5, which char-
acterizes the coupling of a single QWR to the imperfect
reservoir. This value reveals a rather weak coupling be-
tween spatially separated wires most probably via scatter-
ing into the 2D states since the 250 nm distance is too large
for direct coupling by tunneling. Vice versa, the weak cou-
158
pling allows for the independent conductance in spatially
separated wires over length scales smaller than l2D , how-
ever, producing a transmission probability T , 1.

In order to sequentially extract the conductance of spa-
tially separated wires, we study the lateral distribution of
the conductance inside the constriction. In Fig. 3 the con-
ductance is shown as a function of UP � UR 2 UL, which
determines the lateral position of the effective width inside
the constriction. The parameter DUW � UR 1 UL 2 Uk

po
defines a gate-voltage window, i.e., the effective width. In
order to eliminate the parallel conductance of the 2D elec-
trons, which affects the traces at larger DUW , we subtract
the constant conductance in the perpendicular configu-
ration according to Fig. 1(b) for the same gate-voltage
window. At DUW , 0.2 V , two distinct maxima with
G��2e2�h� � 0.5 are observed due to the conductance
along two separated wires. Upon widening DUW , the con-
ductance trace flattens and subsequently develops a nearly
twice as large single maximum at the center position. This
behavior can be understood by a self-consistent calculation
of the potential and charge distribution of a modulation-
doped quantum well used as a model system shown in
Fig. 4(a) [14]. Here, we apply the analogous gate effect on
the depletion length dde in a coplanar capacitor with that
in a sandwich capacitor [15]. In a 2DEG with density n2D
and side-gate depletion voltage Ude, dde ~ Ude�n2D . In
contrast, in a doped quantum well with 3D density n3D and
surface depletion charge qde, dde ~ qde�n3D . Therefore,
if we rescale the depletion voltage by an equivalent de-
pletion charge qde � 8´n3D�n2DUde, this calculation pro-
vides an estimate of the charge distribution in our system.
For the ratio n2D�n3D we choose 10 nm, which is close
to the Bohr radius of the electrons. Additionally, this

FIG. 3. Conductance in a constriction with current parallel
to the step edges vs UP � UR 2 UL recorded at 0.3 K for
different values of the gate voltage window DUW � UR 1
UL 2 Uk

po.
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FIG. 4. (a) Calculated lateral potential and 2D carrier distri-
bution in a constriction. UL and UR denote the left-side and
right-side gate voltages, respectively. The labels I, II, and III
indicate the different sublevels described in the text. (b) Calcu-
lated 1D carrier density vs UP for the sublevels I and II (upper
curve) and the sublevel III (lower curve) in (a) for a gate volt-
age window DUW � 0.1 V . The solid line connecting the data
points is a guide to the eye.

one-dimensional calculation accounts only for the charge
distribution in long wires far away from the contact re-
gion to the 2DEG. The doped regions I and II are 70 nm
wide with n2D � 2.0 3 1015 m22. In region III, the dop-
ing level is assumed to be 5 times smaller corresponding
to the expected carrier profile across the MSA. The cor-
responding 1D carrier densities for the sublevels I and II
(upper curve) and the sublevel III (lower curve) are shown
in Fig. 4(b) as a function of UP for a gate-voltage window
DUW � 0.1 V . The three regions correspond to two 1D
conducting wires I and II, which are spatially separated by
region III. For a small value of DUW , the two conductance
maxima in Fig. 3 are due to the two spatially separated 1D
wires I and II probed sequentially. The conductance at the
center position with G��2e2�h� , 1 in Fig. 3 arises from
the background doping between the wires in region III.
For a gate-voltage window centered near one of the edges
(region I or II), only one of the two spatially separated
wires is conducting, resulting again in a conductance value
of approximately 0.5–1. Therefore, at the two conduc-
tance maxima in Fig. 3, a single wire is selected from the
step array. By simply changing the side-gate voltages, it
is thus possible to switch between neighboring wires and,
upon widening or closing the gate voltage window, to add
or subtract the conductance from spatially separated wires
one by one.

In conclusion, the low temperature electron transport in
modulation-doped heterostructures grown on highly uni-
form, multiatomic step arrays on GaAs(331) is governed
by coupled one-dimensional wires along the step arrays.
Using a narrow constriction with independent side-gate
control, we are able to select a single QWR along the
step edges. In the present system, the long QWRs are
electrically coupled to the reservoir by scattering via a
small number of 2D electrons between the wires. These
background 2D electrons give rise to orders of magnitude
smaller conductance through the constriction aligned per-
pendicular to the step edges. This system allows for the
realization of device concepts based on adding, subtract-
ing, and coupling of neighboring conducting channels.
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