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The quantum stress tensor in the Unruh state for a conformal scalar propagating in a 4D
Schwarzschild black hole spacetime is reconstructed in its leading behavior at infinity and near the
horizon by means of an effective action derived by functionally integrating the trace anomaly.
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In the mid-1970s Hawking [1] showed that black holes
are quantum mechanically unstable: they decay by the
emission of thermal radiation at a temperature inversely
proportional to their mass; i.e., TH � �8pM�21 in units
where h̄ � c � G � kB � 1. This is one of the most
astonishing discoveries of theoretical physics in the sec-
ond half of the century. Nowadays black hole radiation
and its thermodynamical implications, most notably the
Bekenstein-Hawking area-entropy formula [2], are among
the consistency tests any candidate of quantum gravity
theory has to successfully pass in order to be seriously
considered. Notwithstanding decades of intensive stud-
ies, the evolution and fate of an evaporating black hole
(EBH) are still unknown. In the opinion of many people
the final answer to this issue has to wait until a complete
and self-consistent quantum gravity theory has been found.
String theory appears to be the most promising candidate
to achieve this goal and many efforts have been devoted to
showing its compatibility with black hole radiation. How-
ever, one is still far away from understanding, within string
theory, how black holes evaporate.

A more traditional field theoretical approach to the evo-
lution of black holes driven by the quantum fluctuations
of the matter fields relies on the effective action Seff�gab�.
This is the so-called backreaction, which in mathematical
terms is governed by the semiclassical Einstein equation

Gmn�gab� � 8p�Tmn�gab�� , (1)

where Gmn is the Einstein tensor for the metric gab and

�Tmn�gab�� �
2

p
2g

dSeff�gab�
dgmn

(2)

is the renormalized expectation value of the stress energy
tensor operator for the matter fields propagating on gab .
A quantum state and boundary conditions appropriate to
black hole evaporation have to be supplied to Eq. (1).

The framework is quantum field theory in curved space-
time [3], a semiclassical approach in which only the mat-
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ter fields are quantized, whereas gravity is still described
classically according to Einstein’s general relativity. One
expects this approximation to be consistent until the size
of the EBH becomes comparable to the Planck length
(10233 cm). At this point one has to move to a genuine
quantum gravity theory which unfortunately is still lack-
ing. Even within semiclassical gravity, however, the evo-
lution of an EBH is hard to follow simply because the
relevant effective action Seff�gab� is not explicitly known.
The only information available on black hole evaporation
comes from analytical estimates of �Tmn� for matter fields
propagating in a fixed static Schwarzschild black hole ge-
ometry of a given mass M. Selecting a mode basis suitable
for black hole evaporation (Unruh modes [4]), the matter
fields are expanded in that basis, canonically quantized,
and then �Tmn� is directly calculated by modes sum and
point splitting regularization of the divergences.

Note that the Schwarzschild spacetime

ds2 � 2fdt2 1 f21dr2 1 r2�du2 1 sin2udw2� ,
(3)

where f � 1 2 2M�r does not satisfy the semiclassical
Einstein equation (1) because the left-hand side identically
vanishing unlike the right-hand side. However, one can
still regard a Schwarzschild black hole as a sort of zero
order (in the hole luminosity) approximation to a real EBH.

The mode basis relevant for quantization is chosen in
the following way: (i) In modes are positive frequency
with respect to Minkowski time t; (ii) out modes are posi-
tive frequency with respect to Kruskal U � 24Me2u�4M ,
the affine parameter along the past horizon. The quantum
state so defined is called the Unruh state. By condition
(i) this state reduces to the usual Minkowski in vacuum
asymptotically in the past (i.e., no incoming radiation).
The condition (ii) mimics the modes coming out from a
collapsing star as its surface approaches the event horizon,
as shown in Hawking’s original analysis [1].
© 1999 The American Physical Society
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�Tmn� in the Unruh state has the following leading
behavior at infinity [5] (only the nonzero components are
shown):

�Ta
b� !

L
4pr2

µ
21 21
1 1

∂
, (4)

a, b � r , t, corresponding to an outgoing flux of (ap-
proximately) blackbody radiation at the Hawking tem-
perature TH . L is the luminosity of the black hole and
is proportional to M22 (for a scalar field geometric optics
yields L � 2.19731024

pM2 [6]). On the future event horizon,
�Tmn� is regular in a free falling frame as a consequence
of (ii), and one finds [5] that �Tu

u� is finite and

�Ta
b� �

L
4p�2M�2

µ
1�f 21
1�f2 21�f

∂
, (5)

describing an influx down the hole of negative energy
radiation which compensates the flux escaping at infinity.
From these results one expects black holes to evaporate
at a rate of order M22. The evolution is then modeled
as a sequence of Schwarzschild black holes with the mass
parameter M decreasing along the sequence at the above
rate. This should hold at least to zero order.

To go beyond this naive scheme one should directly at-
tack the semiclassical Einstein equations: find �Tmn�gab��
for a sufficiently general (i.e., time dependent) EBH ge-
ometry gab and solve Eq. (1) for this geometry. This
for the moment remains a dream since, as stated before,
Seff�gab� and, hence, �Tmn�gab�� are not known.

Significant simplifications occur when the matter fields
one is considering are conformally invariant, since then at
least part of Seff�gab� can be reconstructed from the trace
anomaly [3]. We shall call this part “anomaly induced
effective action,” i.e., Seff

an .
At the classical level conformal invariance of the matter

fields action implies a vanishing trace of the corresponding
energy momentum tensor. At the quantum level, on the
other hand, the renormalization procedure induces a non-
vanishing expectation value of the trace which does not de-
pend on the quantum state in which the expectation value
is taken. This trace anomaly is expressed completely in
terms of geometrical objects [3]

�Ta
a � � �T � � 2

1
�4p�2 �aC2 1 bE 1 c�R� . (6)

In our notation C2 � CabgdCabgd is the square of the
Weyl tensor and E is an integrand of the Gauss-Bonnet
topological term E � RmnabRmnab 2 4RabRab 1 R2.
We remark that the origin of the trace anomaly is the
renormalization of the action of vacuum in a theory of
conformal invariant matter fields, and that is why in (6)
the R2 term does not show up. Finally, the numerical
coefficients a, b, c depend on the matter species considered
[3]. The anomaly induced effective action is related to the
trace anomaly by functional integration of

2
p

2g
gmn

dSeff
an

dgmn

� �T � . (7)

This operation allows Seff
an to be determined up to a Weyl

invariant functional.
The basic question we would like to address in this pa-

per is whether Seff
an by itself is sufficiently accurate to re-

produce the basic properties of black hole evaporation and
can therefore be used in the semiclassical Einstein equa-
tion (1) to get some insight in the backreaction problem.
To answer this question we shall explicitly test Seff

an in a
specific example where results can be obtained in an inde-
pendent way, namely, a massless scalar field in the Unruh
state propagating on a Schwarzschild black hole geometry.
For this system we already know from our previous discus-
sion the expected leading behavior of �Tmn� at infinity and
near the horizon [see Eqs. (4) and (5)].

We shall now proceed to show that, with appropriate
boundary conditions, Seff

an does indeed lead to a flux of
radiation at infinity emitted by the Schwarzschild black
hole in agreement with Eqs. (4) and (5).

We shall work with the following local form of Seff
an

[7–9]:
Seff
an � 2

c 1 2
3b

12�4p�2

Z
d4x

p
2g R2 1

Z
d4x

p
2g

Ω
1
2

fD4f 1 f

∑
k1C2 1 k2

µ
E 2

2
3

�R

∂∏æ

1
Z

d4x
p

2g

µ
2

1
2

cD4c 1 l1C2c

∂
, (8)
where k1 � 2 a
8p

p
2b

and k2 �
p

2b
8p . We are considering

the introduction of the auxiliary fields as a purely classical
transformation which does not modify the values of a, b, c
in (6). D4 is the fourth order conformal operator [8]

D4 � �2 2 2Rmn=m=n 1
2
3

R� 2
1
3

�=mR�=m ,

(9)

and l1 is an arbitrary parameter not determined by the
theory. After elimination of the auxiliary fields f and c

this expression reduces to the well-known nonlocal form
given by Reigert [8] only if l1 � a
8p

p
2b

. For other values
of l1 this no longer happens. The difference, however, is
a conformal invariant functional which, as we said, cannot
be determined from the trace anomaly alone.

From Eq. (8) the equations of motion for the auxiliary
fields are

1
p

2g

dSeff
an

df
� D4f 1 k1C2 1 k2

µ
E 2

2
3

�R

∂
� 0 ,

(10)
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1
p

2g

dSeff
an

dc
� 2D4c 1 l1C2 � 0 . (11)

Introducing the traceless tensor Kmn as
1496
Kmn�f� �
1

p
2g

d

dgmn

Z
d4x

p
2g �fD4f	 , (12)

we can write
2
p

2g

dSeff
an

dgmn
� �Tmn� � Kmn�f� 2 Kmn�c� 2 8=l=tZRmlnt 1 gmnZR2

rsab 2 4ZRmrltRn
rlt

2
4k2

3

�=m=n�f� 2 gmn��2f�� 1 . . . , (13)
where Z � �k1 1 k2�f 1 l1c and the dots indicate
terms containing either the Ricci tensor Rmn or the Ricci
scalar R. Since for our subsequent analysis these terms
vanish identically, they are not written in detail.

The procedure we shall adopt is to solve the equa-
tions of motion (10) and (11) for the auxiliary fields in
the background Schwarzschild geometry, then insert these
solutions for f and c in �Tmn� of Eq. (13), and com-
pare the results with the expected expressions Eqs. (4)
and (5).

The problem we immediately have to face in trying to
follow the above scheme is how to define in our framework
the Unruh state, since the trace anomaly and, hence, Seff

an
do not make any reference to a particular quantum state.
Note, however, that the solution of the auxiliary field
Eq. (10) [and similarly for Eq. (11)] is determined up to
a solution of the homogeneous equation D4f � 0. It is
through this solution that the state dependence will be
encoded.

The boundary conditions that characterize the Unruh
vacuum which follow from its definition [see (i) and (ii)]
are as follows: (a) No incoming radiation from infinity;
(b) �Tmn� should be regular on the future event horizon
(in a free falling frame). Furthermore, in the Unruh state
≠t�Tmn� � 0. The homogeneous solutions of the auxiliary
fields equation of motion have to implement these bound-
ary conditions in our system if we want to correctly de-
scribe black hole evaporation.

The solution for f can be given in the following general
form: f�r, t� � dt 1 w�r�, where
dw
dr

�
B
3

r 1
2
3

MB 2
A
6

2
a

72M
1

µ
4
3

BM2 1
C

2M
2 AM 2

a

24

∂
1

r 2 2M
2

C
2M

1
r

1 lnr

∑
2

a

36
2M

r�r 2 2M�
2

µ
A

2M
2

a

48M2

∂
r2

3�r 2 2M�

∏
1 ln�r 2 2M�

∑µ
A

2M
2

a

48M2

∂
r3 2 �2M�3

3r�r 2 2M�

∏
,

(14)
and we have defined a � 248�k1 1 k2�. A, B, C, d are
constants that specify the homogeneous solution. The
choice of a linear t dependence appearing in Eq. (14) is the
following: In the Unruh state �Trt� fi 0 and this requires
our field f to have a time dependence otherwise �Trt�
would vanish identically. However, any time dependence
different from the linear one would imply an explicit
time dependence of �Tmn�, which contradicts ≠t�Tmn� � 0.
Any u, w dependence is forbidden by spherical symmetry.

One can express the solution for the other auxiliary field
c in a similar form with the obvious replacements a !
b � 48l1, �A, B, C, d� ! �A0, B0, C0, d0�. Substituting the
solutions for the auxiliary fields f and c in Eq. (13) one
obtains the stress tensor �Tmn�. We symbolically write

�Tmn� � �Tmn�f�� 1 �Tmn�c�� , (15)

dividing the contribution of each individual auxiliary field
to the stress tensor. The boundary conditions (a) and (b)
will be imposed on �Tmn�f�� and �Tmn�c�� separately and
the physical reason for this will become clear at the end
of our analysis.

Being that the calculation of �Tmn� is rather lengthy
and boring, we shall report, here, only the basic results.
A detailed analysis and discussion will be reported in a
forthcoming publication [9].

The �r , t� component is the most simple to write and it
reads

�Tt
r�f�� � 2

dA
r2 , (16)

as expected from the conservation equations =m�Tm
n� �

0 in the Schwarzschild spacetime under the hypothesis
≠t�Tmn� � 0 [10].

Examining the behavior on the horizon r � 2M we
have

≠rf �
E

r 2 2M
1

µ
A 2

a

24M

∂
ln�r 2 2M� 1 reg ,

(17)
where E � 2 a

24 1 4
3BM2 1 C

2M 2 AM 2 2
3AM ln2M.

All logarithmic divergences in �Tmn� are eliminated by
choosing A � a�24M and the leading divergence on the
horizon then becomes

�Tm
n�f�� �

�E2 2 4d2M2�
32M4f2 diag�21, 1�3, 1�3, 1�3� ,

(18)
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where, as usual, f � 1 2 2M�r . This divergence van-
ishes if we choose E � 2dM and we find

�Ta
b�f�� �

1
�2M�2

µ
dA�f 2dA
dA�f2 2dA�f

∂
, (19)

and �Tu
u� finite, which yields �Tm

n� regular on the future
horizon as required by condition (b). Had we chosen E �
22dM, which still makes Eq. (18) vanish, the resulting
�Tm

n� would be regular on the past horizon (and not on
the future).

Examining the behavior at infinity we find that impos-
ing B � 0 the leading term as r ! ` reads

�Ta
b�f�� !

1
r2

µ
2A2�2 2dA

dA A2�2

∂
, (20)

and �Tu
u� � 0 at this order. Requiring no incoming

radiation forces us to set d � A�2.
Repeating the steps for the other auxiliary field c we

eventually arrive at the final results

�Ta
b� !

a2 2 b2

2r2�24M�2

µ
21 21
1 1

∂
, r ! ` , (21)

�Ta
b� �

a2 2 b2

2�48M2�2

µ
1�f 21
1�f2 21�f

∂
, r ! 2M .

(22)

It is remarkable that these expressions are exactly the
required form of Eqs. (4) and (5) if we set L

4p � a22b2

2�24M�2 .
Before proceeding to a numerical comparison, it is

rather illuminating to examine the analytic structure of
the auxiliary fields once the arbitrary constants �A, B, C, d�
and �A0, B0, C0, d0� are fixed according to our Unruh state
conditions (a) and (b). As r ! 2M we find that the
condition E � 2dM makes f linear in y, i.e., f �
dy 1 const, which is regular on the future horizon but
singular on the past horizon. On the other hand B � 0
and d � A�2 yields f � u at infinity describing outgoing
radiation. The same can be said for c . Note that this
behavior emerges only as a consequence of imposing (a)
and (b) separately on �Tmn�f�� and �Tmn�c��. Now, these
auxiliary fields are related to the inverse of the fourth order
operator D4 appearing in the nonlocal form of the action
(8). By our choice of constants we have therefore found
the boundary conditions appropriate to the description of
black hole evaporation.

We come now to the numerology. As said before, l1 is
an arbitrary parameter of our model. If it is chosen such
that Seff

an of Eq. (8) reduces to the Reigert action [8], i.e.,
l1 � a

8p
p

2b
, inserting the appropriate values for one scalar

field (a � 1�120, b � 21�360) we find L � 2
1

p�24M�2

which is negative. This is physically meaningless. This
result is analogous to the one found for minimally coupled
scalar fields classically reduced to 2D under spherical
symmetry [11]. On the other hand, if l1 � 0 which means,
by our choice of constants, c � 0 (i.e., the conformally
invariant part of Seff

an is completely removed) one gets L �
1

720pM2 which differs by a factor of 6 from the result [6].
The matching of this latter would require b � 5.831021

p .
Summarizing, we have shown that the characteristic

behavior at infinity and near the horizon of �Tmn� in the
Unruh state for a Schwarzschild black hole on which
our understanding of black hole evaporation so far is
based can be reproduced by the anomaly induced effective
action once appropriate boundary conditions are imposed
on the auxiliary fields f and c . However, one should
damp enthusiasm: Seff

an as it stands is not able to correctly
reproduce subleading terms in �Tmn�. For example, one
expects [10] leading terms in �Tu

u� as r ! ` to start
off as r24 whereas our analysis predicts the existence
of a r23 term. This failure is not surprising given the
incompleteness of Seff

an . In particular, it is known that the
Reigert action [8] does not give the correct correlation
functions of the theory [12]. It would be interesting to
consider some more complicated versions of the nonlocal
effective action, which are based on the Green functions
of the second order conformal operators rather than on the
fourth order D4.

We end our paper by mentioning that a similar con-
struction can be given also for the Hartle-Hawking state
(black hole in thermal equilibrium) and for the Boulware
state. We will report on this elsewhere [9].
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