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Ground-State Properties of a Rotating Bose-Einstein Condensate with Attractive Interaction
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The ground state of a rotating Bose-Einstein condensate with attractive interaction in a quasi-one-
dimensional torus is studied in terms of the ratio g of the mean-field interaction energy per particle to
the single-particle energy-level spacing. The plateaus of quantized circulation are found to appear if
and only if g , 1 with the lengths of the plateaus reduced due to hybridization of the condensate over
different angular-momentum states.
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The Hess-Fairbank effect [1]—disappearance of the an-
gular momentum (AM) of liquid helium 4 as it is cooled
down to absolute zero with its container kept rotating
slowly—is an analog of the Meissner effect in supercon-
ductivity, and it may therefore be regarded as a hallmark
of superfluidity. The requisites for the appearance of this
effect are the single-valuedness of the wave function and
the presence of a single Bose-Einstein condensate (BEC).
Recent realization of BEC of lithium 7 [2] has opened up
new possibilities associated with the attractive interaction
between atoms; here the Fock exchange interaction could
energetically favor the formation of hybrid BECs, which
might modify the quantization of circulation and the Hess-
Fairbank effect. In this Letter we investigate these possi-
bilities in terms of the conceptually simple geometry of a
quasi-one-dimensional torus.

We consider a system of N weakly interacting bosons
with mass M, confined in a torus of radius R and cross-
sectional area S � pr2, where for simplicity we assume
r ø R. This condition justifies our assumption that the
radial wave function is fixed and independent of v —the
angular frequency of rotation of the torus. At sufficiently
low temperature, the interaction between dilute hard-core
bosons is well approximated by Fermi’s contact interac-
tion, which is characterized by the s-wave scattering length
a. The associated mean-field interaction energy per par-
ticle is given by gN , where g � 2ah̄2�MRS. The positive
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(negative) sign of g implies that the effective interaction
between bosons is repulsive (attractive). The Hamiltonian
of our system in the rotating frame is given, up to terms
which are constant in our approximation, by
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where vc � h̄�2MR2 is the critical angular frequency, l,
m, and n denote the projected angular momenta in units of
h̄, and ĉ

y
l and ĉl are the creation and annihilation opera-

tors of bosons with AM l. In Eq. (1), we have added
the term

P
l h̄vc�v�2vc�2ĉl ĉ

y
l � Nh̄v2��4vc� which is

compensated for by the Lagrange multiplier a in Eq. (4)
and therefore does not modify any result below.

We determine the minimum-energy state of the Hamil-
tonian (1) within a Hilbert subspace given by jC�HF �
j . . . , n2l , . . . , n21, n0, n1, . . . , nl , . . .�, where nl denotes
the number of bosons that occupy the state with AM l.
This is nothing but the Hartree-Fock (HF) approximation;
other possibilities will be discussed later. Because the to-
tal number of bosons is N , nl’s should satisfyX̀

l�2`

nl � N . (2)

The expectation value of the Hamiltonian with respect to
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the state jC�HF is given by
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where Kl�v� � h̄vc�l 2 v�2vc�2. The distribution of
�nl� is determined so as to minimize E��nl�� subject to
condition (2).

Case of repulsive interaction.—We first show that our
ansatz wave function jC�HF reproduces some well-known
results. When g . 0, it is possible to simultaneously
minimize the kinetic energy and the interaction energy in
Eq. (3) with nl � N if l � ��v 1 vc��2vc	 and nl � 0
otherwise, where the symbol �x	 denotes the maximum in-
teger that does not exceed x. This result implies that a
single BEC is energetically favorable whether or not it is
rotated; Bogoliubov’s virtual-pair excitations cause only a
depletion of the condensate and do not alter this conclu-
sion. The single-valuedness of the wave function dictates
that the projected AM be quantized in units of h̄, but one
needs something more to show that it is quantized in units
of Nh̄. The Onsager-Feynman condition for the quantiza-
tion of circulation, in fact, requires the more stringent latter
condition. For the case of repulsive interaction, the Fock
exchange interaction favors a single BEC [3], thereby en-
forcing sharp transitions between different AM states and
requiring that the circulation be quantized in a uniform
system as considered in this Letter. (In a related context,
Castin and Dum have recently considered the stability of
vortices for the nonuniform case of parabolic potentials [4].
See also Refs. [5,6].)

Case of attractive interaction.—When g , 0, it is im-
possible to simultaneously minimize the kinetic energy and
the interaction energy. Were it not for the kinetic term, the
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lowest-energy state would be the one in which the distri-
bution of nl is maximally spread; no single state l could
then be macroscopically occupied, and there would be no
BEC. When the system is spatially confined, however, the
kinetic term competes with the attractive interaction, al-
lowing a metastable condensate to be formed.

The minimal-energy distribution �nl� is determined so
as to minimize E��nl�� in Eq. (3), subject to condition (2),
giving

nl �
N
g

�a 2 �l 2 v�2vc�2	 , (4)

where a is a Lagrange multiplier, and g � jgjN��h̄vc� �
4NjajR�S is the ratio of the mean-field interaction energy
per particle to the single-particle energy-level spacing.
To find an estimate of g, we rewrite it as g 
 4 3

1024N jaj �Å	R�mm	�S�mm2	. For the case of lithium
7 with jaj � 14.6 Å, R � 1 mm, and r � 0.2 mm, we
have g 
 0.046N . With suitable choice of these parame-
ters, it is possible to prepare the system both with g , 1
and with g . 1.

For nl to be positive, there must be minimum and
maximum values of l, i.e., 2l1 and l2. Equation (2)
then becomes

Pl2
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nl � N , which upon substitution of
Eq. (4) for nl gives
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where ṽ � v�2vc. With the definitions of l1 and l2, we
have �l1 1 ṽ�2 , a # �l1 1 1 1 ṽ�2 and �l2 2 ṽ�2 ,

a # �l2 1 1 2 ṽ�2, which lead to
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These inequalities uniquely determine the pair of integers
�l1, l2� for a given set of g and v.

When the torus is at rest (i.e., v � 0), Eq. (4) becomes
nl � �N�g� �a 2 l2�, where a � g��2l1 1 1� 1 l1�l1 1

1��3, and Eq. (6) reduces to l1�4l2
1 2 1��3 , g # �l1 1

1� �4�l1 1 1�2 2 1	�3. These inequalities uniquely deter-
mine the number 2l1 1 1 of macroscopically occupied
AM states for a given g. For example, g # 1, 1 , g #

10, and 10 , g # 35 correspond to 2l1 1 1 � 1, 3, and
5, respectively. Thus, there is a single BEC when g #

1. This condition agrees with the usual criterion for a
metastable BEC to exist that is obtained for a parabolically
confining potential using the Gross-Pitaevskii equation [7].
A new finding in our analysis is that for g . 1 BEC be-
comes hybridized over different AM states.
At the continuum limit vc ! 0 (i.e., R ! `)
with jgjN held constant, g and l1 become infinite
with a�g 
 O�1�l1�. It follows from the relation
nl � �N�g� �a 2 l2� that all n0

ls becomes vanishingly
small, of the order of N�l1. Thus, no BEC exists
for an infinite system in accordance with the standard
wisdom [3].

The analysis for the case of v fi 0 is straightforward,
and we describe here only the results that are relevant to
later discussions.

(i) The region in which a single BEC with nl � N
exists is given from Eq. (6) with l1 � 2l, l2 � l by

0 , g # 2

Ç
v

vc
2 2l

Ç
11 . (7)
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When v�vc is an odd integer, condition (7) can never be
met, so no unique BEC can exist no matter how weak the
attractive interaction.

(ii) The region in which two states with AM l and
l 1 1 are macroscopically occupied is given from Eq. (6)
with l1 � 2l, l2 � l 1 1 byÇ

v
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v
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æ
, (8)
and the corresponding distribution of bosons is given by
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(iii) In general, the region in which k states with AM
l, l 1 1, . . . , l 1 k 2 1 are macroscopically occupied is
given from Eq. (6) with l1 � 2l, l2 � l 1 k 2 1 by
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The phase diagram is shown in Fig. 1. We have thus
shown that there are regions of g and v in which more
than one AM state is macroscopically occupied. This pre-
diction can be tested most directly by switching off the
trap potential and letting the system expand. Because of
Heisenberg’s uncertainty relation, the tight radial confine-
ment of the trap causes the gas to expand more rapidly in
that direction than in other ones, and the superposition of
BECs having different AM should result in an interference
pattern with broken axisymmetry [8].

Partial quantization of circulation.—When we fix g �
jgjN�h̄vc , 1 and increase v from 0, we alternatively
pass regions in which one or two AM states are macro-

FIG. 1. Regions of v�vc and g � jgjN�h̄vc showing vari-
ous phases of coexisting macroscopically occupied angular-
momentum states. The triangles show regions of single
Bose-Einstein condensates with AM l � 23, 22, . . . , 3 from
left to right. The diamond indicated by �23, 22�, for example,
shows the region in which two AM states l � 23 and 22
are macroscopically occupied.
scopically occupied (see Fig. 1), and in the latter regions
the distribution of bosons between the two AM states
changes continuously with v, as can be seen from Eq. (9).
What happens then to the circulation k of the system?
When a single BEC with AM l exists, k is given by hl�M.
When two AM states are macroscopically occupied, k

should be given by h�l��M, where �l� is the ensemble-
averaged value of the AM. To find this value, let us restrict
ourselves to the region

j�v 2 vc��vcj , g # 23j�v 2 vc��vcj 1 4 , (11)

where two states with AM l � 0 and l � 1 are macro-
scopically occupied, and the number of bosons in each
condensate is given from Eq. (9) by n0 � N�2 2

N�v 2 vc���2vcg� and n1 � N 2 n0. Hence, the
ensemble-averaged AM �l� is given by

�l� �
1
2

1
v 2 vc

vc

h̄vc

2jgjN
, (12)

which does not show any sharp transition (see Fig. 2), in
sharp contrast with the case of repulsive interaction. Sup-
pose now that we perform the Hess-Fairbank experiment
for the frequency of rotation and for the strength of interac-
tion that satisfy the condition (11). Then the AM will not
completely be “expelled” even at absolute zero and have
a nonzero value given by Eq. (12). Only when those pa-
rameters are in the region (7) with l � 0, the AM should
vanish at absolute zero.

Hybrid BECs vs a phase-coherent single BEC.—We
have shown within the HF approximation that hybrid
BECs exist for some ranges of parameters g and v�vc.
Recently, Rokhsar has argued that hybrid or “fragmented”
BECs are inherently unstable against the formation of
a single BEC whose macroscopically occupied state is
a linear combination of the “fragments” with definite
relative phases [9]. In our situation, the fragments refer
to macroscopically occupied AM states. We first discuss
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FIG. 2. Ensemble-averaged projected angular momentum �l�
in units of h̄ as a function of v�vc for g # 1. The circulation
is given by k � h�l��M. The crossover regions between
plateaus correspond to the regions in which two AM states are
macroscopically occupied. When g exceeds one, the plateaus
disappear.

the stability of binary BECs against forming such a phase-
coherent single BEC. Because the properties of the system
are periodic functions of v with periodicity 2vc, we may
consider, without loss of generality, the region (11) in
which two BECs with l � 0 and l � 1 coexist. The state
vector of this binary BECs is given by

jC�HF � jn0, n1� �
1

p
n0! n1!

�ĉy
0 �n0 �ĉy

1 �n1 jvac� , (13)

where n0 and n1 are the numbers of bosons in the l � 0
and l � 1 states, which are given by Eq. (9). To be
compared with this state is a single macroscopically oc-
cupied state whose creation operator b̂y is given by b̂y �
aĉ

y
0 1 bĉ

y
1 , where a and b are determined so as to

minimize the total energy, subject to jaj2 1 jbj2 � 1.
The corresponding single BEC is given by

jC�single �
�b̂y�N
p

N!
jvac� �

1
p

N!
�aĉ

y
0 1 bĉ

y
1 �N jvac� .

(14)
The crucial observation here is that, when only two states
are macroscopically occupied, the expectation value
�Ĥ�single of the Hamiltonian (1) over the state (14) does
not contain any non-HF terms that are of the same order
of magnitude as the HF terms because of the conservation
of AM. Therefore, the system cannot lower its energy
by establishing a relative phase coherence between the
different AM states. The minimum value of �Ĥ�single is
reached when

jaj2 �
1
2

∑
1 2

v 2 vc

gvc

N
N 2 1

∏
,

jbj2 � 1 2 jaj2,
(15)
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and by a straightforward calculation, we find that

�Ĥ�HF 2 �Ĥ�single �
jgjN

4

∑µ
v 2 vc

gvc

∂2

2 1

∏
, 0 .

(16)

However, because the energy difference is of the order of
1�N , the two states (13) and (14) are virtually degenerate.
In real life, however, there are inhomogeneities in the con-
tainer “walls” etc., which break the exact axisymmetry.
Such a perturbation, however weak, could stabilize the
single coherent BEC relative to a fragmented one. To
show this, consider a symmetry-breaking perturbation that
mixes the l � 0 state and the l � 1 state: V̂ � tĉ

y
0 ĉ1 1

t�ĉ
y
1 ĉ0. It is easy to see that, while V̂ does not lower the

energy of the system for the HF state (�V̂ �HF � 0), it does
for the single coherent BEC; �V̂ �single � 2N Re�a�bt� �
22Nja�btj, provided that arga- argb- argt � 6p . Be-
cause both l � 0 and l � 1 states are macroscopically
occupied, i.e., a 
 O�1� and b 
 O�1�, �V̂ �single is ex-
tensive. The single coherent BEC can therefore become
energetically favorable due to a (possibly infinitesimal)
symmetry-breaking perturbation. It should be noted, how-
ever, that the plot of �l� versus v in Fig. 2 remains basi-
cally unaltered because it does not depend on whether or
not a phase coherence is established between two macro-
scopically occupied AM state.

The situation is different when more than two AM states
are macroscopically occupied. Now the expectation value
of the Hamiltonian contains non-HF terms that are of
the same order of magnitude as the HF terms, so that
without the need of the symmetry-breaking perturbation
the system can lower its energy by establishing a relative
phase coherence. To show this, let us consider the case
of 1 1 3jv�vcj , g , 10 2 6jv�vcj, where three AM
states l � 21, 0, 1 are macroscopically occupied. The
hybrid BEC state is described by jC�HF � jn21, n0, n1�
and the corresponding single coherent BEC is described
by jC�single � �aĉ

y
21 1 bĉ

y
0 1 gĉ

y
1 �N�

p
N! jvac� with

jaj2 1 jbj2 1 jgj2 � 1. The expectation value of the
Hamiltonian with respect to jC�HF is given by

�Ĥ�HF � K21n21 1 K0n0 1 K1n1

2 jgj �n21n0 1 n0n1 1 n1n21�
2 jgjN�N 2 1��2 , (17)

which is minimized when n71 � N�1 7 �3v 6 vc��
�gvc�	�3 and n0 � N�1 1 2�g	�3. The expectation
value of the Hamiltonian with respect to jC�single is
given by
�Ĥ�single � N�K21jaj2 1 K0jbj2 1 K1jgj
2� 2 jgjN�N 2 1� �jaj2jbj2 1 jbj2jgj2 1 jgj2jaj2�

2 jgjN�N 2 1��2 2 jgjN�N 2 1� �ab�2g 1 a�b2g�� . (18)

Because the last two terms are phase dependent and of the same order of magnitude as the remaining terms, it is clear
that the single coherent BEC can have a lower energy than the fragmented BEC state by, e.g., the following choice of
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amplitudes, a �
p

n21 eiua , b �
p

n0 eiub , g �
p

n1 eiug with the relative phase relation ua 2 2ub 1

ug � 0. Thus the ternary BEC state is unstable against
the formation of a single coherent BEC. Similar mecha-
nisms should work when more than three AM states are
macroscopically occupied.

In summary, we have studied the ground-state properties
of a rotating BEC with attractive interaction confined in
a quasi-one-dimensional torus. When the condition (7)
is met, only one AM state is macroscopically occupied.
When the condition (8) is met, two BECs with different
AM can, in principle, coexist. However, any deviation
from the exact axisymmetry is shown to stabilize a single
coherent BEC relative to a fragmented one. The plateaus
of quantized circulation appear if g , 1, but the lengths of
the plateaus are reduced. In other regions of parameters
g and v, more than two AM states are macroscopically
occupied, where non-HF terms stabilize a single coherent
BEC even in the presence of the exact axisymmetry.
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