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RNA Secondary Structure Formation: A Solvable Model of Heteropolymer Folding
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The statistical mechanics of heteropolymer structure formation is studied in the context of RNA
secondary structures. A designed RNA sequence biased energetically towards a particular nati
structure (a hairpin) is used to study the transition between the native and molten phase of the RNA
a function of temperature. The transition is driven by a competition between the energy gained from
the polymer’s overlap with the native structure and the entropic gain of forming random contacts. A
simplified Ḡo-like model is proposed and solved exactly. The predicted critical behavior is verified via
exact numerical enumeration of a large ensemble of similarly designed sequences.

PACS numbers: 87.15.Aa, 05.40.–a, 64.60.Fr, 87.15.Cc
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A biopolymer such as a DNA or protein is a heteropoly
mer. It consists of different types of monomers con
nected linearly in a specific order. Interactions among t
monomers give each polymer a robust three dimensio
structure on which its biological function depends. Th
sequence-to-structure relation is rather simple in the c
of complementary DNA strands, but can be very compl
in the case of proteins. The latter has been intensiv
studied in the last decade using many different approach
see, e.g., Refs. [1–4].

A number of important ingredients are involved in de
termining the structure of a heteropolymer. They includ
(i) thermal fluctuations which “denature” the polymer int
a random coil at high temperatures, (ii) monomer-speci
binding which freezes a random heteropolymer into
“glass” at low temperatures, and (iii) sequence corre
tion which biases the polymer into a certain specific (no
random) structure, commonly referred to as the “nativ
structure. The native structures are selected in nature
evolution, but can also be obtained artificially throughse-
quence design [5]. The interplay of these ingredients lead
to a number of phases depending on the environment (e
the temperature) and the extent of sequence correlati
or design. The nature of these phases and the transiti
among them have been discussed in the context of pro
folding [2,3]. However, proteinlike models arenot ideal
systems to study phase-related issues because protein
rather short (typically under500 monomers). Thus, the
thermodynamic limit of long proteins (e.g., strands o
10 000 amino acids) is not very meaningful.

Here we will study the molecule RNA, an interestin
biopolymer which has a mixture of proteinlike and
DNA-like properties [6]. Because of the nature of th
physical interaction [7] between the monomers of a RN
aspects of the RNA structure formation problem a
considerably easier to treat than protein folding. Als
the thermodynamic limit is more meaningful for the RNA
which can contain as many as10 000 monomers. In this
paper, we will describe the simplest effect of sequen
bias to the formation of RNAsecondary structures
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(defined below). We will focus on the transition betwee
a designed native structure and the RNA’s “molte
phase,” a thermalized, collapsed phase which exists in
intermediate temperature regime in between denatura
and freezing. Such a transition was suggested previou
[5] based on numerical studies of short RNA sequenc
Here, we will elucidate the physics of this transition b
introducing a simplifiedtwo-state model, analogous to the
approach taken by Ḡo for proteins [8]. We will solve
the model exactly, and derive the critical properties
the transition between the native and the molten pha
The applicability of our two-state model to the native
molten transition of designed heterogeneous sequence
verified by direct numerical enumeration and finite-siz
scaling analysis.

RNA is a polynucleotide chain consisting of the fou
“bases”A, U, G, andC. Energy of the order of severa
kBT ’s can be gained by forming a complementary pa
(i.e., A-U and C-G) and then stacking them in a doubl
helical structure similar to a double-stranded DNA. In o
der to form these base pairs, the RNA will need to be
back onto itself at various locations, resulting in a numb
of helical segments. These helices are then arrange
a three dimensional “tertiary” structure, stabilized by th
much weaker interaction between the helices. Beca
of this crucial separation of energy scales for the RN
it is possible to distinguish between the formation
“secondary” and tertiary structures: a RNA seconda
structure is a collection of base pairings, with the r
striction that any two base pairs�i1, j1� and �i2, j2� have
to be either “nested” (i.e.,i1 , i2 , j2 , j1) or “inde-
pendent” (i.e.,i1 , j1 , i2 , j2) [9–11]. Base pairings
violating these rules lead to structural elements whi
typically cannot form simple double-helices. Thus, the
are energetically or kinetically suppressed and deem
part of the tertiary structure. Each secondary structu
can be represented by a noncrossing arch diagram
Fig. 1(a)], where a pairing between the basesi and j
is indicated by a dashed line connectingi and j on
a stretched backbone. Figure 1(b) shows an alterna
© 1999 The American Physical Society 1479
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FIG. 1. Representations of the secondary structure of a RNA:
(a) a noncrossing arch diagram; (b) a helix diagram. The
dashed lines indicate base pairings.

representation of the same structure; here the backbone
is bent and the dashed lines are short, in order to con-
vey a sense of the backbone topology. The regions
with consecutive base pairings form the above mentioned
double-helices.

To study the thermodynamic ensemble of all possible
secondary structures of a given RNA molecule, the en-
ergy of each structure needs to be specified. Here we shall
take the simplest energy function, with y�b, b0� for each
pairing of the bases �b, b0�, and y0 � 2s0T for each un-
paired base mimicking the entropy gained from unbinding
[12]. Accurate energy parameters including the effects
of stacking, loops, etc., [11] should be used for predict-
ing actual secondary structures of real RNA molecules.
As we will argue below, they are irrelevant in regards to
the asymptotic properties of the phase transition, and will
therefore be neglected here for simplicity. In fact, our
parameters y�b, b0� should be viewed as coarse-grained
quantities describing the energy of pairing two short seg-
ments of bases.

The class of RNA secondary structures is clearly hierar-
chical and belongs to the class of Hartree diagrams widely
used in the self-consistent treatment of many-body quan-
tum systems. The recursive nature of the diagrams allows
efficient computation of the exact partition function of an
arbitrary sequence: Consider a segment of bases from the
positions i to j . i inclusive. The base at j can be either
unbound or bound to any base k [ �i, . . . , j 2 1�. For
the simple energy function we have adopted here, the par-
tition function Zi,j for this segment of bases then obeys

Zi,j � Zi,j21 1

j21X
k�i

Zi,k21e2´k,j�TZk11,j21 , (1)

where we take ´i,j � y�bi , bj� 2 2y0. The partition
function Z1,N of a strand of length N can be computed
recursively using (1) (with Zi,i � Zi,i21 � 1) in O�N3�
time [11].

Before we discuss the effect of structure formation due
to sequence bias, we first give a qualitative description of
the behavior of an uncorrelated random RNA sequence
[13]. The energetics of this system is determined by the
mean ´�T � and standard deviation d´ of the pairing en-
ergies ´i,j . Denaturation occurs at a temperature where
´�Td� � 0, since for large and positive ´0, the unbound
state is preferred [14]. Below the denaturation tempera-
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ture Td , the bases of the RNA are mostly paired together.
There, the system can take on two possible phases: At
very low temperatures (T ø d´), heterogeneity of the
sequence is important, forcing the polymer to adopt the
optimal base pairings which minimize the total energy;
this is the glass phase [13,15]. At intermediate tempera-
tures (Td . T * d´�, differences in the binding energy
are less important while an average attraction between the
monomers still exists. There, the entropy of forming dif-
ferent pairings becomes dominant, resulting in the molten
phase. In a separate study [13], we will demonstrate the
irrelevance of weak sequence inhomogeneity in the in-
termediate temperature regime, thereby establishing the
stability and self-consistency of the molten phase. Fur-
thermore, as sequence heterogeneity is irrelevant in the
molten phase, statistical properties in this phase can be
obtained from (1) by simply taking ´i,j � ´0 & ´, where
´0 , 0 can be interpreted as an effective mean attraction.
Here, we will take the existence of such a molten phase as
a conjecture and examine the effect of sequence bias.

To do so, we need to construct a sequence with a domi-
nant native structure. For simplicity, we will take the na-
tive structure to be a hairpin with a long stem, a structure
which has been studied numerically and experimentally
for short RNAs [5,16] and oligopeptides [17]. We will
consider here the limit where the stem is long in order to
elucidate asymptotic properties. In the native structure,
the bases �1, 2L�, �2, 2L 2 1�, . . . , �L, L 1 1� of a length
N � 2L sequence are paired. We call these the “native
pairs” or “native contacts.” Bias towards this structure
can be “designed” into the sequence by choosing a ran-
dom sequence for the bases 1 to L of the molecule and
then taking the second half of the molecule (L 1 1 to 2L)
to be the exact reverse complement of the first half [5].
The perfectly complementary native pairs then make the
native structure the “ground state” of the system. Upon
increasing temperature, the entropy of forming non-native
pairings will compete with and hence weaken the effec-
tive bias of the native structure. Alternatively, this bias
can be weakened by random “mutations” of the designed
sequence. For sufficiently weak effective bias, the RNA
can “melt” from its native structure into any of the dena-
tured, molten, or glass phases, depending on the tempera-
ture and the strength of the bias.

To study the native-molten transition of the designed se-
quence analytically, we shall describe the pairing energies
and the bias by a simple two-state model,

´i,j � édi1j,2L11 1 ´0 , (2)

for designed sequences of length 2L. The first term
in (2) (with é , 0) mimics the additional attraction of
native pairs due to sequence design; jéj characterizes
the “strength” of the design which can be controlled
by the mutation process mentioned above. The second
term describes the average attraction of the “background”
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characteristic for the molten phase. The two-state model
(2) is conceptually similar to the one introduced by Gō
in the context of protein folding [8]. While Gō proposed
this model to simplify the numerical simulation of lattice
protein models, we will show that this model actually gives
a quantitative description of the native-molten transition of
the RNA secondary structure problem (1).

Our task now is to study the system defined by
Eqs. (1) and (2). We begin with a description of the
molten phase, with é in (2) set to zero. This phase is
described by a single parameter, q � e2´0�T . Because
of the translational invariance of the uniform interaction,
the partition function can be written as Zi,j � Z0� j 2

i 1 2; q�. In terms of the Laplace transform bZ0�m; q� �P`
��1 Z0��; q�e2m�, the recursion relation (1) takes on

the simple form bZ21
0 � em 2 1 2 qbZ0. Inverse Laplace

transforming this solution in the limit of large � using the
saddle point method, one finds the asymptotic form [9,18]

Z0��; q� � A�q��2uem0�q�� (3)

with u � 3�2 and m0�q� � log�1 1 2
p

q�. Physically,
the partition function describes the configurational entropy
of forming different secondary structures. Each structure
can be viewed as a configuration of an annealed (and
rooted) branched polymer [14,19], as Fig. 1 suggests.
Note that microscopic effects such as the energetic gain
of base stacking, cost of hairpin loop formation, and the
exclusion of very short loops correspond to the different
fugacities for the stem and end points of the branched
polymer; they are irrelevant to the asymptotic scaling
properties of the branched polymer [19]. In particular,
they do not change the value of the exponent u � 3�2,
which is a defining characteristic of the molten phase and
will play a key role in what follows.

We now include the additional energetic bias é in (2)
due to sequence design. For a RNA sequence of 2L bases,
observe that each secondary structure consists of a series
of native pairings, e.g., �i1, 2L 2 i1 1 1�, �i2, 2L 2 i2 1

1�, etc., separated by “bubbles” of lengths �k � ik11 2 ik

containing only non-native pairings of the intervening
bases. Let the Boltzmann weight of each native pairing

be eq � e2é�T , and let the restricted partition function
describing all possible non-native pairings in a molten
bubble of length � be W��; q�. The total partition function
Z�L 1 1; eq, q� for the model (2) can then be conveniently
written in Laplace space as

bZ�m; eq, q� � bW�m; q�
X̀
n�0

�qeq bW�m; q�	n, (4)

where bW�m; q� and bZ�m; eq, q� are, respectively, the
Laplace transform of W��; q� and Z�L; eq, q�. Note thatbW�m, q� is completely specified by (4) and the “boundary
condition”
Z�L 1 1; eq � 1, q� � Z0�2L 1 1; q� . (5)

Before we proceed with an analytical solution of this
system, let us observe that Eq. (4) is mathematically very
similar to the equation derived by Poland and Scheraga
[20] describing the thermal denaturation of perfectly
complementary DNA double strands. (Note however that
while only the interaction of native pairs is considered in
the treatment of DNA denaturation, the RNA folding prob-
lem considered here includes interactions between bases
far apart along the backbone of the chain.) The mathe-
matical similarity can be made clearer if one assumes (as it
will turn out to be the case) that the statistics of the molten
bubbles can be approximated simply by that of a molten
RNA of appropriate length, i.e., W��; q� � Z0�2� 2 1; q�.
Then the form (3) suggests that one can think of W��� as
the Boltzmann weight of a “Gaussian polymer loop” of
length � in d dimensions, with the fictitious dimension d
given by 2u. Thus, the molten bubbles described by W
are analogous to the denaturation bubbles in the standard
denaturation problem. They both represent the entropic
excitations from the native phase, but the physical origin
of these entropies is quite different: The denaturation
bubbles are driven by the configuration entropy gained
by the unconstrained single strands, while the molten
bubbles are driven by the “branching entropy” of
secondary structures within the (collapsed) molten phase.
Nevertheless, we expect that the native-molten transition
belongs to the same universality class as the denaturation
transition of Ref. [20], with d � 2u � 3.

The partition function Z�L; eq, q� can actually be
computed exactly for all q and eq in the limit of large L
[14]. First, by using Eqs. (4) and (5), an exact expression
for bZ�m; eq, q� can be derived. It is then straightfor-
ward to extract the reduced free energy f�eq, q� �
2�lnZ��L from the singularity in bZ. Close to the
critical point eqc � �3

p
1 1 2

p
q 2 1���

p
1 1 2

p
q 2

1� . 1, one finds f�q, eq� � 22m0�q� [with m0�q�
as given in (3)] for eq # eqc, while f�q, eq� �
22m0�q� 1 B�q� �eq 2 eqc�2 with a known regular
function B�q� for eq * eqc. This form of the free energy
implies a continuous phase transition with a finite jump
in the specific heat at the critical point; thus, the specific
heat exponent is a � 0. From the free energy, we can
easily compute the average fraction of native contacts,
Q � 2df�d lneq, which constitutes the order parameter
of the phase transition. In the thermodynamic limit,
Q � 0 for eq # eqc and Q � 1 for eq ¿ eqc. Close to the
critical point, Q 
 �eq 2 eqc�.

For strands of finite length L, this length always enters
the saddle point equation involved in the inverse Laplace
transform of bZ�m� in the combination L�eq 2 eqc�n with
n � 2 [14]. The finite-size result can be cast into the
form Q�L� � L21�2g��eq 2 eqc�L1�2	 in the vicinity of the
critical point. The scaling function g� y	 can be computed
1481
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exactly, with g� y	 
 y for y ¿ 1, g� y	 
 1�j yj for
y ø 21, and g� y	 
 O�1� for j yj ø 1.

In order to verify whether the above critical behaviors
of the Gō-like model describe the native-molten transition
of designed heterogeneous sequences, we numerically
iterated Eq. (1) for perfectly designed sequences [21].
The pairing energies ´i,j ’ s were chosen to be 21 for
complementary pairs and 0 otherwise.

Figure 2(a) shows the specific heat for perfectly de-
signed sequences of 200 to 1600 bases, averaged over
100 realizations of randomness. Direct extraction of
critical exponents from this data is difficult due to
the strong correction-to-scaling effects of the expected
discontinuity (a � 0). However, for a � 0, a good
numerical estimate of the critical temperature Tc can be
obtained from the common intersection point of the curves
at different lengths. This is more clearly seen from the
result of the Gō-like model (2); see inset of Fig. 2(a).
The fraction Q of native contacts can then be used for
a detailed scaling analysis. As shown in Fig. 2(b), the
scaling plot of QL1�2 versus L1�2�Tc 2 T ��Tc collapses
the data and approaches the predicted critical behavior
g� y	 represented by the solid line.

To summarize, we analyzed the heteropolymer struc-
ture formation problem in the context of RNA secondary
structures. The native-molten structural transition results
from a competition between the energetic gain of native
contacts and the branching entropy of the molten phase.
Critical properties can be obtained exactly after introduc-
ing an approximate two-state model à la Gō; the valid-
ity of the approximation is verified by direct numerical
calculation of designed sequences. Our findings are in
qualitative agreement with the earlier numerical study on
short RNA sequences with more realistic energy parame-
ters [5]. Aside from depicting a concrete physical pic-
ture of the phase transition and the molten phase, our
analytical study provides a quantitative description of
thermodynamic properties of the system, e.g., the con-
tinuous nature of the phase transition contrary to what
was claimed in Ref. [5]. Throughout this study, we have
neglected the effect of the excluded-volume interaction

FIG. 2. Numerical results on RNA sequences with bias for
a hairpin. (a) Specific heat for different sequence lengths.
The vertical line indicates the critical temperature Tc. The
inset depicts exact results obtained from the Gō-like model.
(b) Scaling plot of the fraction Q of native contacts; the solid
line is the exact solution of the Gō-like model.
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[22]. This effect changes the value of the exponent u

[23]; hence it is expected to change the universality class
or even the order of the phase transition in three dimen-
sions as will be discussed elsewhere [14]. However, it
should not change the qualitative physics of the com-
peting interactions discussed here. This physics should
also be relevant to the statistics of heteroduplex formation
which occurs in the hybridization of partially complemen-
tary heterogeneous DNA strands [24]. In this regard, the
structural transition discussed here resembles the physics
of similarity detection investigated previously in the con-
text of DNA sequence alignment [25].
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