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Noise Dressing of Financial Correlation Matrices
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We show that results from the theory of random matrices are potentially of great interest to understand
the statistical structure of the empirical correlation matrices appearing in the study of multivariate time
series. The central result of the present study, which focuses on the case of financial price fluctuations,
is the remarkable agreement between the theoretical prediction (based on the assumption that the
correlation matrix is random) and empirical data concerning the density of eigenvalues associated to the
time series of the different stocks of the S&P 500 (or other major markets). In particular, the present
study raises serious doubts on the blind use of empirical correlation matrices for risk management.
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Empirical correlation matrices are of great importance in
data analysis in order to extract the underlying information
contained in “experimental” signals and time series (e.g.,
experimental data de-noising, pattern recognition, weather
forecast, econometric data, multivariate analysis, etc.). In
addition to the direct measure of correlations, various
classes of statistical tools, such as principal component
analysis, singular value decomposition, and factor analysis,
strongly rely on the validity of the correlation matrix in
order to obtain the meaningful part of the signal. Thus, it
is important to understand quantitatively the effect of noise
and of the finiteness of the time series in the determination
of the empirical correlation. It is also advisable to develop
“null-hypothesis” tests in order to check the statistical
validity of the results obtained against totally random
cases.

In the case of financial assets—on which we will focus
in the following—the study of empirical correlation matri-
ces is even more relevant, since an important aspect of risk
management is the estimation of the correlations between
the price movements of different assets. The probability of
large losses for a certain portfolio or option book is domi-
nated by correlated moves of its different constituents—
for example, a position which is simultaneously long in
stocks and short in bonds will be risky because stocks and
bonds usually move in opposite directions in crisis periods.
The study of correlation (or covariance) matrices thus has
a long history in finance and is one of the cornerstone of
Markowitz’s theory of optimal portfolios [1,2]: given a set
of financial assets characterized by their average return and
risk, what is the optimal weight of each asset, such that the
overall portfolio provides the best return for a fixed level
of risk, or conversely, the smallest risk for a given overall
return?

More precisely, the average return RP of a portfolio P
of N assets, is defined as RP �

PN
i�1 piRi , where pi �i �

1, . . . , N� is the amount of capital invested in the asset i,
and �Ri� are the expected returns of the individual assets.
Similarly, the risk on a portfolio can be associated to the
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total variance s
2
P �

PN
i,j�1 piCijpj , where C is the co-

variance matrix. The optimal portfolio, which minimizes
the risk for a given value of RP , can easily be found
introducing a Lagrange multiplier and leads to a linear
problem where the matrix C has to be inverted. In par-
ticular, the composition of the least risky portfolio has a
large weight on the eigenvectors of C with the smallest
eigenvalues [1,2].

However, a reliable empirical determination of a correla-
tion matrix turns out to be difficult. For a set of N different
assets, the correlation matrix contains N�N 2 1��2 entries,
which must be determined from N time series of length
T ; if T is not very large compared to N , one should ex-
pect that the determination of the covariances is noisy and,
therefore, that the empirical correlation matrix is to a large
extent random. In this case, the structure of the matrix is
dominated by measurement noise; therefore, one should be
very careful when using this correlation matrix in applica-
tions. In particular, as we show below, the smallest eigen-
values of this matrix are the most sensitive to this “noise,”
the corresponding eigenvectors being precisely the ones
that determine the least risky portfolios. It is thus impor-
tant to devise methods which allow one to distinguish “sig-
nal” from noise, i.e., eigenvectors and eigenvalues of the
correlation matrix containing real information (which one
would like to include for risk control) from those which are
devoid of any useful information, and, as such, unstable in
time. From this point of view, it is interesting to compare
the properties of an empirical correlation matrix C to a null
hypothesis purely random matrix as one could obtain from
a finite time series of strictly independent assets. Devia-
tions from the random matrix case might then suggest the
presence of true information. The theory of random matri-
ces has a long history since the 1950s [3], and many results
are known [4]. As shown below, these results are also of
genuine interest in a financial context (see also [5,6]).

The empirical correlation matrix C is constructed from
the time series of price changes dxi�t� (where i labels the
asset and t the time) through the following equation (In the
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following we assume that the average value of the dx’s has
been subtracted off, and that the dx’s are rescaled to have
a constant unit volatility s2 � �dx2

i � � 1.):

Cij �
1
T

TX
t�1

dxi�t�dxj�t� . (1)

We can symbolically write Eq. (1) as C � 1�T M MT ,
where M is a N 3 T rectangular matrix, and T denotes
matrix transposition. The null hypothesis of independent
assets, which we consider now, translates itself in the
assumption that the coefficients Mit � dxi�t� are inde-
pendent, identically distributed, random variables, the so-
called random Wishart matrices or Laguerre ensemble of
the random matrix theory [7,8]. (Note that even if the
“true” correlation matrix Ctrue is the identity matrix, its
empirical determination from a finite time series will gen-
erate nontrivial eigenvectors and eigenvalues; see [7,9].)
We will note rC�l� the density of eigenvalues of C, de-
fined as

pC�l� �
1
N

dn�l�
dl

, (2)

where n�l� is the number of eigenvalues of C less than
l. Interestingly, if M is a T 3 N random matrix, rC�l�
is self-averaging and exactly known in the limit N ! `,
T ! ` and Q � T�N $ 1 fixed [7,9] and reads

rC�l� �
Q

2ps2

p
�lmax 2 l� �l 2 lmin�

l
,

lmax
min � s2�1 1 1�Q 6 2

q
1�Q � ,

(3)

with l [ �lmin, lmax	, and where s2 is equal to the vari-
ance of the elements of M [9], equal to 1 with our nor-
malization. In the limit Q � 1 the normalized eigenvalue
density of the matrix M is the well-known Wigner semi-
circle law, and the corresponding distribution of the square
of these eigenvalues (that is, the eigenvalues of C) is then
indeed given by (3) for Q � 1. The most important fea-
tures predicted by Eq. (3) are as follows:

(i) The fact that the lower “edge” of the spectrum is
strictly positive (except for Q � 1); there is therefore
no eigenvalues between 0 and lmin. Near this edge,
the density of eigenvalues exhibits a sharp maximum,
except in the limit Q � 1 (lmin � 0), where it diverges
as 
1�

p
l.

(ii) The density of eigenvalues also vanishes above a
certain upper edge lmax.

Note that the above results are valid only in the limit
N ! `. For finite N , the singularities present at both
edges are smoothed: the edges become somewhat blurred,
with a small probability of finding eigenvalues above lmax
and below lmin, which goes to zero when N becomes
large. The precise way in which these edges become
sharp in the large N limit is actually known [10].

Now, we want to compare the empirical distribution
of the eigenvalues of the correlation matrix of stocks
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corresponding to different markets with the theoretical
prediction given by Eq. (3), based on the assumption that
the correlation matrix is purely random. We have studied
numerically the density of eigenvalues of the correlation
matrix of N � 406 assets of the S&P 500, based on daily
variations during the years 1991–1996, for a total of T �
1309 days (the corresponding value of Q is 3.22).

An immediate observation is that the highest eigenvalue
l1 is 25 times larger than the predicted lmax —see Fig. 1
inset. The corresponding eigenvector is, as expected, the
“market” itself; i.e., it has roughly equal components on
all of the N stocks. The simplest “pure noise” hypothesis
is therefore clearly inconsistent with the value of l1. A
more reasonable idea is that the components of the corre-
lation matrix which are orthogonal to the market is pure
noise. This amounts to subtracting the contribution of
lmax from the nominal value s2 � 1, leading to s2 �
1 2 lmax�N � 0.85. The corresponding fit of the empiri-
cal distribution is shown as a dotted line in Fig. 1. Several
eigenvalues are still above lmax and might contain some in-
formation, thereby reducing the variance of the effectively
random part of the correlation matrix. One can therefore
treat s2 as an adjustable parameter. The best fit is ob-
tained for s2 � 0.74 and corresponds to the dark line in
Fig. 1, which accounts quite satisfactorily for 94% of the
spectrum, while the 6% highest eigenvalues still exceed the
theoretical upper edge by a substantial amount. Note that
still a better fit could be obtained by allowing for a slightly

FIG. 1. Smoothed density of the eigenvalues of C, where the
correlation matrix C is extracted from N � 406 assets of the
S&P 500 during the years 1991–1996. For comparison we
have plotted the density Eq. (3) for Q � 3.22 and s2 � 0.85:
this is the theoretical value obtained assuming that the matrix
is purely random except for its highest eigenvalue (dotted line).
A better fit can be obtained with a smaller value of s2 � 0.74
(solid line), corresponding to 74% of the total variance. Inset:
Same plot, but including the highest eigenvalue corresponding
to the market, which is found to be 25 times greater than lmax.
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FIG. 2. Distribution of the eigenvector components u �
ya,i , for five different eigenvectors well inside the interval
�lmin, lmax	, and comparison with the no information assump-
tion, Eq. (4). Note that there are no adjustable parameters.
Inset: Plot of the same quantity for the highest eigenvalue,
showing marked differences with the theoretical prediction
(dashed line), which is indeed expected.

smaller effective value of Q, which could account for the
existence of volatility correlations [11].

We have repeated the above analysis on different stock
markets (e.g., Paris) and found very similar results. In a
first approximation, the location of the theoretical edge, de-
termined by fitting the part of the density which contains
most of the eigenvalues, allows one to distinguish “infor-
mation” from noise. However, a more precise procedure
can be applied, where the finite N effects are adequately
treated, using the results of [10], and where the effect of
variability in s2 for the different assets can be addressed
[9,11].

The idea that the low lying eigenvalues are essentially
random can also be tested by studying the statistical struc-
ture of the corresponding eigenvectors. The ith compo-
nent of the eigenvector corresponding to the eigenvalue
la will be denoted as ya,i . We can normalize it such thatPN

i�1 y
2
a,i � N . If there is no information contained in

the eigenvector ya,i , one expects that for a fixed a, the
distribution of u � ya,i (as i is varied) is a maximum en-
tropy distribution, such that u2 � 1. This leads to the so-
called Porter-Thomas distribution in the theory of random
matrices:

P�u� �
1

p
2p

exp 2
u2

2
. (4)

As shown in Fig. 2, this distribution fits extremely well the
empirical histogram of the eigenvector components, except
for those corresponding to the highest eigenvalues, which
lie beyond the theoretical edge lmax. We show in the inset
the distribution of u’s for the highest eigenvalue, which is
markedly different from the “no information” assumption,
Eq. (4). This eigenvector is nearly uniform, which reflects
that all assets are most affected by a common factor: the
market itself. This is the tenet of the simple one-factor b

model, much used in financial applications [1].
We have finally studied correlation matrices correspond-

ing not to price variations but to the (time dependent)
volatilities of the different stocks, determined from the
study of intraday fluctuations. These matrices should con-
tain some relevant information for option trading and hedg-
ing [12]. The obtained results are again very similar to
those shown in Figs. 1 and 2.

To summarize, we have shown that results from the
theory of random matrices are of great interest in under-
standing the statistical structure of the empirical correlation
matrices. The central result of the present study is the re-
markable agreement between the theoretical prediction and
empirical data concerning both the density of eigenvalues
and the structure of eigenvectors of the empirical corre-
lation matrices corresponding to several major stock mar-
kets. Indeed, in the case of the S&P 500, 94% of the total
number of eigenvalues fall in the region where the theo-
retical formula (3) applies. Hence, less than 6% of the
eigenvectors, which are responsible for 26% of the total
volatility, appear to carry some information. This method
might be very useful to extract the relevant correlations
between financial assets of various types, with interest-
ing potential applications to risk management and port-
folio optimization. It is clear from the present study that
Markowitz’s portfolio optimization scheme based on a
purely historical determination of the correlation matrix is
not adequate, since its lowest eigenvalues (dominating the
smallest risk portfolio) are dominated by noise. In order
to remove this bias, a better procedure would be to asso-
ciate to each eigenvector with the “noise band” a constant
eigenvalue, chosen such that the sum of the eigenvalues
coincides with the trace of the original correlation matrix.
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