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Entanglement bits or “ebits” have been proposed as a quantitative measure of a fundamental re
in quantum information processing. It is, thus, important to show that the same number of eb
different forms are interconvertible in the asymptotic limit. Here we draw attention to a very impor
but hitherto unnoticed aspect of entanglement manipulation—the classical communication cost.
construct an explicit procedure which demonstrates that for bipartite pure states, in the asymptotic
entanglement can be concentrated or diluted with vanishing classical communication cost. Entangl
of bipartite pure states is thus established as a truly interconvertible resource.
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During the last couple of years the study of quantu
nonlocality (entanglement) has undergone a substan
transformation. It has become clear that entanglement
most important aspect of quantum mechanics, which pla
a fundamental role in quantum information processin
(including teleportation [1], dense coding [2], and com
munication complexity [3]). It is now customary to regar
entanglement as a fungible resource, i.e., a resource wh
can be transformed from one form to another, can be c
ated, stored, or consumed for accomplishing useful tas
It is however the aim of this paper to draw attention
an important and hitherto ignored aspect of entanglem
manipulation which has to be clarified before one can r
gard entanglement as a completely fungible property. T
problem is theclassical information cost of entanglement
manipulation.

Consider the most famous use of entanglement, nam
teleportation. As Bennettet al. [1] have shown, entan-
glement can be used to communicate unknown quant
states from one place to another; this task can be achie
even though neither the transmitter nor the receiver is a
to find out the state to be transmitted.

The basic equation of teleportation is

1 singlet teleports1 qubit. (1)

Equation (1) already contains a large degree of abstr
tion. In the original description of teleportation it wa
shown how a singlet can teleport “an unknown state o
quantum system which lives in a two-dimensional Hilbe
space” (for concreteness, states of a spin 1�2 particle). In
Eq. (1) however, instead of states of a spin 1�2 particle
we wrote “qubit,” where by qubit we understand the qua
tum information which can be encoded in one spin 1�2
particle. This information need not be originally encode
in one spin 1�2 particle. It could, for example, be distri-
buted among many spins. Indeed, as Schumacher and
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ers showed [4–6] quantum information can be efficien
manipulated—compressed or diluted essentially witho
losses, similar to classical information. Thus it mak
sense to talk about “the quantum information which cou
be compressed into a spin 1�2 particle.”

The question is whether we could replace the left-ha
side of Eq. (1) by a similar abstract quantity. That is, w
would like to be able to say something like

1 ebit teleports1 qubit, (2)

where one ebit describes any quantum system wh
contains entanglement equivalent to that of a singlet.

As a matter of fact, Eq. (2) is in common use. Th
point is that, at least for pure states, there are effici
ways in which entanglement can be manipulated, a
arbitrary states can be transformed—essentially with
losses—into singlets [7]. Indeed, suppose that two dist
observers, Alice and Bob, initially share a large numb
n of pairs of particles, each pair in the same arbitra
stateC. Then, by performing suitable local operation
and by communicating classically to each other, Ali
and Bob can obtain from thesen copies of the stateC
some numberk of pairs, each pair in a singlet state
The action is “essentially without losses” since Alic
and Bob can transform thek singlets back inton Cs.
(The actions are reversible in the asymptotic limit
large n; the requirement of the asymptotic limit fo
reversibility is similar to that in compressing classical a
quantum information.) The quantity of entanglement
an arbitrary state, measured in ebits, is simplyk�n, the
number of singlets which can be obtained reversibly fro
each pair of particles in the original stateC [7,8].

However, an important element is missing. While du
ing concentrating and diluting entanglement by the e
cient methods described in [7], entanglement is not lo
Alice and Bob might have to communicate classically
© 1999 The American Physical Society 1459
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each other. They have thus to pay the price of exchanging
some bits of classical communication.

The classical communication cost of entanglement ma-
nipulation is a largely ignored problem. Indeed, the gen-
eral attitude is that entanglement is “expensive” while
classical communication is “cheap,” and all the effort is
generally directed only to preserving entanglement by all
means. However, to claim that entanglement is truly a
fungible resource, one must also consider the classical
communication cost of entanglement manipulation.

The classical communication cost of entanglement ma-
nipulation has in fact implications for teleportation. In-
deed, Eq. (1) which describes the original teleportation is
rather incomplete. The complete statement is that

1 singlet 1 communicating 2 classical bits

teleports 1 qubit. (3)

Obviously, the more abstract equivalent of this equation,
namely,

1 ebit 1 communicating 2 classical bits teleports 1 qubit,

(4)

or, following Bennett’s notation,

1 ebit 1 2 bits $ 1 qubit (5)

would not be valid if during transforming the original
supply of entanglement (in some arbitrary form) into
singlets required for teleportation, Alice and Bob had to
exchange supplementary bits of classical information.

For teleportation the matter seems to be rather aca-
demic. It is the entanglement which has the fundamental
role, while the classical bits are, to a large extent, sec-
ondary— in the absence of entanglement, no matter how
many classical bits Alice and Bob exchange, teleporta-
tion would be impossible. However, for other quantum
communication tasks, the classical communication cost is
highly relevant. Consider, for example, the “dense cod-
ing” communication method [2]. As Bennett and Wies-
ner showed, when Alice and Bob share a singlet, Alice
can communicate to Bob two classical bits by sending a
single qubit. The basic equation is thus

1 singlet 1 communicating 1 qubit

communicates 2 classical bits, (6)

whose mathematical abstraction is

1 ebit 1 1 qubit $ 2 bits. (7)

In dense coding the main goal is to enhance the ability
of performing classical communication by using entan-
glement. However, if in the process of transforming the
original supply of arbitrary entanglement into singlet form
we had to use a lot of classical communication, this would
defeat the objective of the entire exercise.

In the present paper we show that for bipartite pure
states (in the asymptotic limit), entanglement can be
transformed—concentrated and diluted— in a reversible
1460
manner with zero classical communication cost. Hence,
the notion of “ebit” is completely justified. In other
words, it doesn’ t matter in which form entanglement
is supplied; all that matters is the total quantity of
entanglement. Provided that they have the same von
Neumann entropy, both singlets and partially entangled
states have the same power to achieve any task in
quantum information processing (in the asymptotic limit).

In order to establish entanglement as a fungible resource,
we have to show that both entanglement concentration
(transforming arbitrary states into singlets) and entangle-
ment dilution (transforming singlets into arbitrary states)
can be done without any classical communication cost.
The first task is easy— the original entanglement concen-
tration method presented in [7] proceeds without any clas-
sical communication between the parties. In other words,
the classical communication cost of the procedure is iden-
tically equal to zero. The rest of this paper is devoted to
studying entanglement dilution. We will show that, al-
though diluting entanglement may require classical com-
munication, the amount of communication can be made to
vanish in the asymptotic limit.

The standard entanglement dilution scheme [7] requires
a significant amount of classical communication (two
classical bits per ebit). Therefore, it fails to demonstrate
the complete interconvertibility of entanglement. To es-
tablish entanglement as a truly fungible resource, we
present a new entanglement dilution scheme which con-
serves entanglement and requires an asymptotically van-
ishing amount of classical communication. To construct
our scheme, we first prove the following.

Lemma: Suppose Alice and Bob share n singlets. Let
P be the state of a bipartite system AB where each system
has a 2n dimensional Hilbert space, and let the Schmidt
coefficients [9] of P be 2r -fold degenerate. Then, there
is a procedure by which Alice and Bob can prepare P

shared between them such that only 2�n 2 r� bits of
classical communication and local operations are needed.

Proof: With the 2r -fold degeneracy in Schmidt coef-
ficients, P can be factorized into a direct product of r
singlets and a residual state, G, whose Schmidt decompo-
sition contains only 2n2r terms, i.e., up to bilocal unitary
transformations,

P � Fr ≠ G , (8)

where F denotes a singlet state. Since Alice and Bob
initially share singlets F, there is no need to teleport the
Fs. To share P nonlocally, Alice only needs to teleport
the subsystem G to Bob. Alice and Bob can then apply
bilocal unitary transformations to their state to recover
P. (We do not know if such local computations can
be done efficiently, but this is unimportant here.) Since
the dimension of G is only 2n2r , only 2�n 2 r� bits are
needed for its teleportation.

Remark: Compared with a direct teleportation of the
whole state P, the above procedure provides a saving of
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2r classical bits of communication because of the 2r -fold
degeneracy of Schmidt coefficients.

The crux of this Letter is the following theorem.
Theorem: In the large N limit, N copies of any pure

bipartite state c can be approximated with a fidelity [11]
arbitrarily close to 1 by a state that has D � 2d �
2�NS2O�

p
N �� degeneracies in its Schmidt decomposition

where S is the von Neumann entropy of a subsystem of c .
In other words, given any e . 0, for a sufficiently large
N , we have

cN � Fd ≠ D 1 u2 , (9)

where d � �NS 2 O�
p

N ��, D is an un-normalized resid-
ual state whose Schmidt decomposition contains 2O�

p
N �

terms, and ku2k , e.
Remark: When combined with the Lemma, the Theo-

rem implies that Alice and Bob can perform entanglement
dilution from N copies of c to NS singlets using an
asymptotically vanishing number, namely, O�

p
N�N� �

O�1�
p

N � of classical bits of communication per ebit.
This establishes the main result of this Letter.

Proof of the theorem: The idea of the proof is simple.
We would like to decompose the state cN into two pieces,
cN � u1 1 u2 such that the dominant piece u1 has a
large degree of degeneracy in its Schmidt coefficients as
required in the Theorem, while ku2k is small.

While the idea of our proof is general, it is best under-
stood by considering the special case when c � aj00� 1

bj11�. Consider the Schmidt coefficients of cN . They
have the form akbN2k and are, in general, highly degen-
erate— the coefficient akbN2k appears �N

k � times.
The first step of our proof is to note that we can divide

the different values of k into two classes—“ typical” and
“atypical.” For a typical value of k, log�N

k � lies between
NS�c� 2 O�

p
N � and NS�c� 1 O�

p
N �, say between

NS�c� 2 10
p

N and NS�c� 1 10
p

N . (The actual coef-
ficient of the

p
N term will depend on the value of e used

in the Theorem. Here, we simply take it to be ten to il-
lustrate the basic idea of the proof.) All other values of k
are atypical. It is well known that, compared to the mea-
sure of the typical set, the overall measure of the atypi-
cal set is very small (i.e., the norm of the projection of
cN on the Hilbert subspace spanned by the atypical terms
in the Schmidt decomposition is small). We shall include
all the atypical terms in u2.

Let us now concentrate on the typical terms. According
to the requirement of the theorem, all terms in u1 � Fd ≠
D are degenerate and their degeneracies have a common
factor of the order of 2d � 2�NS2O�

p
N ��. If the degrees

of degeneracy of the typical terms all had a common
factor of the order of 2�NS2O�

p
N ��, we could include all

these terms in u1, and the proof would be complete.
Unfortunately, although indeed each term in the typical
set has a degeneracy of the order 2�NS2O�

p
N ��, when one

varies k over the typical set, the various values of � N
k �
do not have a large common factor. To deal with this
problem we “coarse grain” the number of terms of Schmidt
decomposition grouping them in bins of say 2dNS�c�220

p
N e.

More concretely, for each k in the typical set, let the
number of full bins nk be such that

nk2dNS�c�220
p

N e #

µ
N
k

∂
, �nk 1 1�2dNS�c�220

p
N e. (10)

We simply keep only nk2dNS�c�220
p

N e out of the origi-
nal �N

k � terms in u1 and put the remaining � N
k � 2

nk2dNS�c�220
p

N e , 2dNS�c�220
p

N e terms in u2. Now nk is
at least of the order 210

p
N and is, therefore, very large.

Consider u1. The degeneracies of its Schmidt coefficients
are multiples of 2dNS�c�220

p
N e, hence we can write

u1 � Fd ≠ D where d � dNS�c� 2 20
p

N e.
Let us now summarize. By construction, the state u1

is of the form Fd ≠ D. The norm ku2k is very small
for two reasons: (1) the contribution to ku2k from the
atypical set is small and (2) for each k in the typical set, its
contribution to ku1k is at least nk times its contribution to
ku2k where nk is very large. Consequently, fN � u1 1

u2 � Fd ≠ D 1 u2 where d � �NS 2 O�
p

N ��, D is an
un-normalized residual state of 2O�

p
N� dimensions, and

ku2k is very small.
In conclusion, we have shown that entanglement dilu-

tion from N�S�c� 1 d� singlets to N pairs of a bipartite
pure state c can be done with only O�

p
N� bits of classi-

cal communication. So the number of classical bit per ebit
needed is O� 1

p
N

�, which vanishes asymptotically. In other
words, states with the same amount of bipartite entangle-
ment are interconvertible to one another in the asymptotic
limit (with a vanishing amount of classical bits of commu-
nication per ebit). Therefore, entanglement bits or ebits
can be regarded as a universal quantum resource, as origi-
nally proposed by Bennett and others.

The above discussion has been done for the case of
pairs of two spin 1�2 particles in pure states. The gen-
eralization to pure states of pairs of higher spin particles
is immediate. However, generalization towards multipar-
ticle entanglement and/or density matrices is problematic.

In the case of pure-state multiparty entanglement, not
only do we not know about the classical communication
cost of transforming entangled states from a form into
another, but it is also not yet clear whether there exists a
reversible procedure which can transform (in asymptotical
limit) n copies of an arbitrary multiparty pure state C into
some standard entangled state (or set of states [12]). In
fact, it is not even clear what the standard entangled states
should be. The existence of such a procedure is, however,
quite probable.

The case of density matrices is even more complicated.
Here, even in the simplest case of pairs of spin 1�2 par-
ticles, it is probable that reversible transformations do not
exist at all. That is, although arbitrary entangled density
matrices can be prepared from singlets, and then singlets
1461
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can be reconstructed from the density matrices, the num-
ber kin of spins necessary to create n copies of an arbitrary
density matrix is probably always larger than the number
kout of spins which can be obtained from the n density
matrices. (Following the terminology of [13], the entan-
glement of formation is larger than the entanglement of
distillation.) If indeed this is the case, it is then proba-
ble that these transformations require non-negligible clas-
sical communication. Actually, a reasonable conjecture
is that there exists a very close connection (possibly a
sort of conservation relation) between the amount of irre-
versibility in the transformation singlets ! density matri-
ces ! singlets and the amount of classical communication
needed for this process.

Finally, we would like to add some more general
remarks. If we restrict the actions one is allowed to
perform on the entangled states, entanglement might no
longer be interconvertible. For example, if we do not
allow collective processing but insist that each pair of
entangled particles should be processed separately, then
entanglement is not interconvertible anymore. Indeed,
while one could still produce singlets from partially
entangled states such as aj1� j1� 1 bj2� j2� by using the
procustean method [7], this action is not reversible (that is,
the overall probability of success for the chain of actions
initial state ! singlet ! initial state is less than 1).

Thus entanglement is a fungible resource only when no
restrictions are placed on the allowed entanglement ma-
nipulation procedures. This raises the question of what
exactly do we mean by the “unrestricted” set of actions?
The usual paradigm [7,13–15] of manipulating entangle-
ment is that of “collective local actions 1 classical com-
munication,” and the basic statement is that “Entanglement
cannot increase by collective local actions and classical
communications.”

However, in the light of the new effects discovered by
R., P., and M. Horodecki, that is, the existence of bound
entanglement [16] and especially the possibility of activat-
ing bound entanglement [17] this paradigm might turn out
to be insufficient. And, indeed, it is very restrictive. After
all, why not allow also quantum communication? It is true
that quantum communication does not conserve entangle-
ment and permits creation of entanglement out of nothing.
However, there is no reason why such nonconservation
could not be easily kept under control. We would thus
suggest the paradigm of “collective local actions 1 classi-
cal communication 1 quantum communication,” and the
basic statement that “By local actions, classical communi-
cations and N qubits of quantum communication, entan-
glement cannot increase by more than N ebits.”
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