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We find a minimal set of necessary and sufficient conditions for the existence of a local proced
that converts a finite pure state into one of a set of possible final states. This result provides a powe
method for obtaining optimal local entanglement manipulation protocols for pure initial states. As
example, we determine analytically the optimal distillable entanglement for arbitrary finite pure stat
We also construct an explicit protocol achieving this bound.
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The existence of nonlocal correlations, or entangleme
between parts of a composite quantum system is at
heart of quantum information theory and its application
[1]. In recent years, much effort has been expended on
problem of how to define and quantify the entangleme
of a given state in physically meaningful ways. On
very fruitful approach, first pursued by Bennett and co
workers [2–4], is to regard entanglement in terms of th
limitations that exist to the manipulation of a composite
system when each subsystem is operated on locally.
paradigmatic situation is as follows: suppose Alice an
Bob each possess part of a quantum system, which
prepared in a stater. Qualitatively, the existence of
entanglement implies that some transformations ofr

which are in principle possible cannot be realized if Alic
and Bob are allowed to perform onlylocal operations
on their respective subsystems, and to exchange class
communication. In this paper, transformations of this typ
will be referred to as “local transformations,” or “LQCC”
for short.

A quantitative way of expressing this fact is in term
of so-calledentanglement monotones (EMs) [5]. These
are functionś �r� of the quantum state that can, on av
erage, never increase under LQCC [6]. There are ma
known EMs, for example the entanglements of distillatio
[2–4] and formation [4,7], and the relative entropy of en
tanglement [8] (in fact, any reasonable measure of enta
glement must by definition be an entanglement monoton
and vice versa). Despite their different physical interpr
tations, they all share a common feature: a transformati
which, on average, increasesany single EM cannot be
realized locally. In other words, they providenecessary
conditions any local transformationT must satisfy.

A natural question that presents itself is then: what a
sufficient conditions forT to be local? In other words, we
would like to have a set�´i� of entanglement monotones
such that, if the average�´i�T �r��� # ´i�r� for all i, then
T is local. Ideally, this set should also beminimal, in the
sense that these conditions should not be redundant [9].
important result in this direction was recently presented b
Nielsen [10], who found sufficient conditions for the lo
cality of transformations that take one givenpure state to
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another with 100% probability. In the present Letter, w
extend Nielsen’s theorem to the case where the transform
tion need not be deterministic, that is, whenT may lead to
several possible final states. We demonstrate that, for t
case, a set of EMs recently introduced by Vidal [5] is i
fact minimal in the sense described above. They therefo
provide us with a powerful universal tool for finding opti-
mal local entanglement manipulation protocols. We app
it to the problem ofentanglement concentration (or purifi-
cation), which concerns understanding to which extent di
tant parties can extract a maximally entangled state from
nonmaximally entangled one using only LQCC [2–4,11
This is one of the central problems of quantum informatio
theory, and is of crucial importance for all applications
such as teleportation [12], which require the existence
maximally entangled states between distant parties. W
the help of our generalization of Nielsen’s theorem, and
results from the well-known simplex optimization metho
of linear programming theory [13], we are able to analyt
cally determine theoptimal purification protocol for the
case where Alice and Bob share a given pure statejc�. By
“optimal” we mean the following: assume that Alice and
Bob locally manipulate their shared state until they obta
either a maximally entangled state (of some dimension),
a completely disentangled one. We determine the strate
that awards them, on average, with the largest amount
distilled entanglement, which we find to be

�E�max �
NX

j�1

�aj 2 aj11�j lnj , (1)

where a1 $ · · · $ aN are the nonzero Schmidt coeffi-
cients ofjc�.

It is important to stress that our results pertain to an
finite shared state. Until now (see alsonote added), the
problem of finding the best purification protocol in the
sense above had been completely solved (for pure sta
and some particular mixed states), only in theasymptotic
limit, where Alice and Bob shareN ! ` identical copies
of the same state [2,4]. This limit has fundamenta
significance in quantum information and communicatio
theory—for example, for deriving bounds on channe
capacities [4]. Nevertheless, it is clear that in practic
© 1999 The American Physical Society 1455
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Alice and Bob will always share only a finite, in general
small, amount of entanglement. Thus, as a number of
authors [5,9,10,14] have stressed, it is also important to
understand entanglement transformations in this regime,
with the asymptotic results emerging in the suitable limit.

Suppose then that Alice and Bob share a pure state
jc� of a bipartite quantum system, with ordered Schmidt
decomposition jc� �

PN
i�1

p
ai jiA� jiB� [15]. Vidal [5]

has shown that each of the following set of functions of
the ai constitutes an entanglement monotone:

El�jc�� �
NX

i�l

ai , 1 # l # N . (2)

We can use these monotones to describe the follow-
ing theorem due to Nielsen [10]: let jh� be another
pure bipartite state. Then there exists a local transfor-
mation that takes jc� to jh� with 100% certainty iff
El�jh�� # El�jc��, 2 # l # N . In other words, the �El�
form a sufficient set of monotones for this kind of trans-
formation. In fact, since they also uniquely determine the
Schmidt components of jc� and jh�, which completely
and minimally characterize such transformations (Sec. 5.1
of [9]), it follows that �El� is actually a minimal set of
EMs in this case.

Quantum mechanics is not, however, concerned only
with deterministic transformations. As long as Alice
and Bob do not lose or discard information about their
system, the most general transformation they can apply
on jc� will produce one of m possible pure states jhi�,
with probability pi . We demonstrate now that Vidal’ s
monotones also provide necessary and sufficient conditions
for these general transformations to be realized locally.

Theorem 1: Let 2 distant parties share a pure state
jc�; let �jhj��m

j�1 be a set of m other pure bipartite states.
Then a transformation T of jc� that outputs state jhj� with
probability pj �

P
j pj � 1� can be realized using LQCC

iff the N entanglement monotones El do not increase on
average, that is, iff

mX
j�1

pjEl�jhj�� # El�jc��, 1 # l # N . (3)

Proof: Necessity follows from the definition of an en-
tanglement monotone, and is proven for the El functions
in [5]. To prove sufficiency, assume Eq. (3) is satisfied.
We will construct an explicit local strategy that realizes
the transformation T . First of all, it is clear that we need
to consider only the special case where all target states
jhj� have the same Schmidt basis as jc� (which we can
refer to as the “standard” basis). The general case then
follows from the following simple facts: (i) Any two states
with the same Schmidt components are interconvertible
by a local unitary operation, so that to realize T one needs
only to generate, with probability pj , a state jh

0
j� with

the same Schmidt coefficients as jhj� in the standard ba-
sis. (ii) If two or more target states jhj1 �, · · · , jhjn � have
exactly the same Schmidt components, one can generate
1456
the state jh
0
j1

� with probability
Pn

k�1 pjk , and then “ roll
a classical die” with relative probabilities �pji 	

Pn
k�1 pjk �

to decide which one of the jhjk � to transform to.
Suppose then that the target states can all be written

in the ordered Schmidt form jhj� �
PN

i�1
p

mji jiA� jiB�
(note that the number of nonzero Schmidt components of
jhj� cannot be greater than N [14]).

Let us now define the average target state jh̄� as

jh̄� 

NX

i�1

p
gi jiA� jiB�, gi �

mX
j�1

pjmji . (4)

It can be seen that gi $ gi11, so

El�jh̄�� �
NX

i�l

mX
j�1

pjmji �
mX

j�1

pjEl�jhj�� # El�jc�� ,

(5)

where we have used condition (3). We can therefore
apply Nielsen’ s theorem, which implies that there exists a
local protocol L for deterministically converting from jc�
to jh̄�. Let us now define the following set of positive
operators on Alice’ s subspace:

Aj �
NX

i�1

s
pjmji

gi
jiA� �iAj, 1 # j # m . (6)

We can see that, for 1 # j # m,

Aj ≠ 1Bjh̄�
NX

i�1

p
pjmji jiA� jiB� �

p
pj jhj� , (7)

mX
j�1

A
y
j Aj �

NX
i�1

√Pm
j�1 pjmji

gi

!
jiA� �iAj � P , (8)

where P is the projector
PN

i�1 jiA� �iAj. Together with the
complement 1A 2 P, the set �Aj�m

j�1 constitutes therefore
a local POVM which, if applied to jh̄�, outputs state
jhj� with probability pj . The combination of this POVM
with the deterministic protocol L realizes the required
transformation T .

This result can be directly extended to the case where
the target states may be mixed. In this case, Eq. (3) still
holds (substituting rj for jhj�), as long as we extend the
definition of El using the “convex roof” rule [5]

El�rj� � min
rj�

P
i
qij jhij� �hij j

mX
i�1

qijEljhij� , (9)

where the minimum is taken over all realizations of rj .
Theorem 1 provides a powerful tool for optimizing

local quantum transformations according to a wide range
of criteria. For example, in Ref. [5], the author seeks
to determine the local transformation that maximizes the
probability of converting one given pure state to another.
He obtains an upper bound on this probability from the
existence of the monotones El , and then constructs an
explicit protocol realizing the bound. Theorem 1 justifies
this result, showing that a similar strategy will work
for any optimization problem involving an initial pure
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state; in other words, the optimum given the constraints
expressed in Eq. (3) will always be achievable.

We can immediately apply this result to the problem
of optimally concentrating the entanglement of a finite
bipartite pure state. This situation has already been
considered by Lo and Popescu [14], who have obtained
the local protocol that gives the greatest probability
of converting a given pure state jc� to a maximally
entangled state of any given number of levels. However,
it may well be that Alice and Bob merely wish to
concentrate their entanglement, without regard to what
maximally entangled state they end up with. In this case,
a reasonable question to ask is the following: out of
all such local concentration protocols, which one leads,
on average, to the largest amount of shared distilled
entanglement?

The problem may be formally posed as follows: let Alice
and Bob share a single pure state jc� �

PN
i�1

p
ai jiA� jiB�,

whose entanglement they wish to concentrate using LQCC.
Following the notation of Ref. [14], let us define jfj� �

�1	
p

j �
Pj

i�1 jiA� jiB� as a maximally entangled state of j
levels (note that jf1� is a product state). Consider the set of
local transformations that generate jfj�, 1 # j # N , with
probability pj [16]. If we choose to measure the amount
of entanglement in jfj� by the von Neumann entropy
of trBjfj� �fjj, namely lnj, then the average amount of
distilled entanglement obtained from such a procedure is

�E� �
NX

j�1

pj lnj . (10)

Our problem is to maximize this quantity over all proba-
bility distributions for the pi that are consistent with
the constraints in Eq. (3). Theorem 1 then guarantees
the existence of a local protocol leading to this optimal
distribution.

It is easily seen that, for l # j,

El�jfj�� �
j 2 l 1 1

j
, (11)

and that it vanishes otherwise. In this case, the constraints
in Eq. (3) read

NX
j�l

pj

√
j 2 l 1 1

j

!
#

NX
j�l

aj , 1 # l # N . (12)

This is a linear optimization problem with linear inequal-
ity constraints, a kind widely studied in many fields of
science and engineering. It can be solved using the tech-
niques of linear programming theory, a branch of applied
linear algebra that is familiar to most engineers, though
not so well known among physicists. We will not attempt
to explain the terminology and results from this theory
that are required for our solution; instead, we refer the
reader to textbooks (e.g., [13]). Our main result is

Theorem 2: The optimal entanglement concentra-
tion procedure for a single pure bipartite state jc� with
Schmidt coefficients a1 $ · · · aN . 0 is one that pro-
duces a maximally entangled state jfj� of j # N levels
with probability p

opt
j � j�aj 2 aj11�. The correspond-

ing optimal average distilled entanglement is �E�max �PN
j�1�aj 2 aj11�j lnj.
Proof: First, it is easy to check that this probability

distribution satisfies (actually, saturates) all the inequali-
ties in Eq. (12). In matrix form, we have B �p � �q, where
�p, �q are vectors with components pj � j�aj 2 aj11�;
ql �

PN
j�l aj , and B is an upper triangular N 3 N ma-

trix with components blj �
j112l

j for j $ l, and 0 other-
wise. In the parlance of linear programming theory, this is
a basic, feasible solution to the problem, with all the slack
variables assuming the value zero. We can then apply
the simplex algorithm to check whether this is the optimal
solution or, if not, to find a better one. A sufficient con-
dition for optimality [ [13], Eqs. (2.36) and (2.37)] is that
the following inequalities are all satisfied

zk 

NX

i�1

cibik $ 0, 1 # k # N , (13)

where ci � lni is the coefficient of pi in Eq. (10), and
bik are the elements of the inverse of B. It is easy to
show that the only nonzero bik are

bk22,k � k 2 2; bk21,k � 22�k 2 1� ;

bkk � k .
(14)

The conditions in Eq. (13) are then trivially satisfied for
k � 1, 2. For k $ 3, we have

zk � �k 2 2� ln�k 2 2� 1 k ln�k�

2 2�k 2 1� ln�k 2 1� . (15)

The remaining inequalities follow from the convexity of
x lnx for x . 0. The distribution p

opt
j � j�aj 2 aj11�

is therefore optimal.
In the remainder of this article, we examine some

aspects of theorem 2. First of all, note that, though
theorem 1 provides an explicit local protocol realizing
the optimal probability distribution given above, it is a
complicated one, involving a series of local measurements
and subsequent conditioned local rotations by Alice and
Bob. We can, however, also explicitly construct a simpler
optimal protocol, involving only a single local generalized
measurement (such a simple protocol always exists for
any local transformation on a bipartite pure state [14]).
Consider the positive operators

Oj �
jX

i�1

s
aj 2 aj11

ai
jiA� �iAj ≠ 1B . (16)

It is easily seen that

Ojjc� �
p

aj 2 aj11

jX
i�1

jiA� jiB� �
q

p
opt
j jfj� , (17)

NX
j�1

O
y
j Oj �

NX
i�1

PN
j�i�aj 2 aj11�

ai
jiA� �iAj � P , (18)
1457
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where we have interchanged
PN

j�1

Pj
i�1 $

PN
i�1

PN
j�i ,

and where P is as in Eq. (7). The set �Oj , 1 2 P�
corresponds thus to a single local POVM measurement
that optimally concentrates the entanglement of state jc�.

Although it is optimal, the protocol provided by theo-
rem 2 is also in general irreversible, i.e., it is impossible
to recover the original state with 100% probability. This
follows since, in general, �E�max , S, where S is the en-
tropy of entanglement of jc�. Note that, since the mono-
tones El are all conserved in this process [the inequalities
in Eq. (12) are all saturated], this set is not sufficient to in-
dicate the reversibility of a local transformation. It can be
shown, however, that our protocol does become reversible
in the asymptotic limit where Alice and Bob share N ! `

copies of identical pure states (in which case �E�max ! S).
This result, which recovers the one obtained by Bennett
et al. [2] can be derived from expression (1) for �E�max us-
ing the saddle point method. It can also be checked that,
for any finite pure state, our protocol is always more effi-
cient than the one suggested in [2]. This is not surprising,
as their protocol is state independent, while ours is state
dependent.

The solution provided by theorem 2 has an intuitive
appeal: the optimal protocol for concentrating entangle-
ment is one that first maximizes pN , that is, the likeli-
hood of obtaining the most entangled state possible; then,
given this, it maximizes pN21, and so forth. Although
this seems very reasonable, it is not at all obvious that it
should be the case: for instance, it could have conceivably
been more advantageous not to attempt to obtain jfN�,
if this choice had sufficiently increased the likelihood of
generating jfN21� [i.e., enough to increase the final av-
erage in Eq. (10)]. In fact, it can be readily seen that a
different optimal solution may be obtained if Alice and
Bob choose to use a different entanglement measure to
“weigh” each probability in Eq. (10). As a simple ex-
ample: if they use the trivial “ indicator” measure that
assigns a value 0 to a disentangled state, and 1 to any
entangled state [8], then the optimal solution is the one
that maximizes p2. (This follows from the fact that, for
any j . 2, jfj� may be locally converted to jf2� with
100% efficiency [14]). This solution will in general not
maximize pN [14], so it differs from the one found in
theorem 2. Ultimately, the choice of which measure to
use (and in the finite-state regime, there are many possi-
bilities [9]) depends on Alice and Bob’s particular needs.
Whatever the choice, however, the techniques of theo-
rems 1 and 2 always determine the optimal protocol.

In summary, we have presented a general method
for determining the locality of transformations on a
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given pure bipartite state, based on the nonincrease of
a minimal set of entanglement monotones. We have
then used this method to determine the optimal strategy
for locally concentrating the entanglement in such a
state. We believe that a similar approach will also prove
fruitful for more general problems involving mixed and/
or multiparticle states [17].
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Note added—After this work was completed, Hardy
called our attention to his simultaneous work [18], in
which Eq. (1) is also obtained using entirely different
methods.
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