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We consider here a disentanglement process which transforms a stater of two subsystems into an
unentangled (i.e., separable) state, while not affecting the reduced density matrix of either subs
Recently, Terno [Phys. Rev. A59, 3320 (1999)] showed that an arbitrary state cannot be disentang
by a physically allowable process, into atensor product of its reduced density matrices. In this Lette
we show that there are sets of states which can be disentangled, but only into separable states ot
the product of the reduced density matrices, and other sets of states which cannot be disentangle
Thus, we prove that a universal disentangling machine cannot exist.
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Entanglement plays an important role in quantum
physics [1,2]. Because of its peculiar nonlocal propertie
entanglement is one of the main pillars of nonclassicalit
The creation of entanglement and the destruction of e
tanglement via general operations are still under extens
study [3]. Here, we concentrate on the process of d
entanglement of states. For the sake of simplicity, w
concentrate on qubits in this Letter, and on the disenta
glement of two subsystems.

Let there be two two-level systems “X” and “Y .” The
state of each such system is called a quantum bit (qub
A pure state which is a tensor product of two qubits ca
always be written asj0�X�0�Y �� by an appropriate choice
of basis,j0� and j1� for each qubit. For convenience, we
drop the index of the subsystem (whenever it is possibl
and order them so thatX is on the left side. By an appro-
priate choice of the basisj0� and j1�, and using the
Schmidt decomposition (see [2]), an entangled pure st
of two qubits can always be written asjc� � cosfj00� 1

sinfj11� or using a density matrix notationr � jc� �cj,

r � �cosfj00� 1 sinfj11�� �cosf�00j 1 sinf�11j� .

(1)

The reduced density matrix of each of the qubits isrx �
TrY �r�XY �� and rY � TrX�r�XY ��. In the basis used
for the Schmidt decomposition the two reduced densi
matrices are

rX � rY �

µ
cos2f 0

0 sin2f

∂
. (2)

Following Terno [4] and Fuchs [5], let us provide the
following two definitions (note that the second is an inte
esting special case of the first):

Definition.—“Disentanglement into a separable state
is the process that transforms a state of two (or more) su
systems into an unentangled state (in general, a mixture
product states) such that the reduced density matrices
each of the subsystems are unaffected.

Definition.—“Disentanglement into a tensor produc
state” is the process that transforms a state of two (
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more) subsystems into a tensor product of the two reduc
density matrices.

One of the main goals of this Letter is to show that
universal disentangling machine cannot exist. A univers
disentangling machine is a machine that could disentan
any state which is given to it as an input. In order t
prove that such a machine cannot exist, it is enough
find one set of states that cannot be disentangled if t
data (regarding which state is used) are not available.

To analyze the process of disentanglement consider
following experiment involving two subsystemsX andY ,
and a sender who sendsboth systems to the receiver who
wishes to disentangle the state of these two subsyste
Let the sender (Albert) and the disentangler (Natha
define a finite set of statesjci�; let Albert choose one of the
states at random, and let it be the input of the disentangl
machine designed by Nathan. Nathan does not get fr
Albert the data regardingwhich of the states Albert chose,
and Nathan’s aim is to design a machine that will succe
to disentangle any of the possible statesjci�.

In the same sense that an arbitrary state cannot
cloned (a universal cloning machine does not exist [6,7
it was recently shown by Terno [4] that an arbitrary sta
cannot be disentangled into a tensor product of its reduc
density matrices. Note that this novel result of [4] prove
that universal disentanglement into product states is
impossible, and it leaves open the more general quest
of whether auniversal disentanglement is impossible (that
is, disentanglement into separable states).

We extend the investigation of the process of disenta
glement beyond Terno’s novel analysis in several way
First, we show that there are nontrivial sets of states th
can be disentangled. Then, we find a larger class (than
one found by Terno) of states which cannot be disenta
gled into product states. Next, we present a set of sta
that cannot be disentangled into tensor product states,but
can be disentangled into separable states. Finally,
present our most important result; a set of states thatcan-
not be disentangled into separable states. The existence
of such a set of states proves that a universal disent
gling machine cannot exist. Using the terminology of [6
© 1999 The American Physical Society 1451
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we can say that our Letter shows that a single quantum
cannot be disentangled.

Consider a set of states containing only one state.
Obviously this state can be disentangled: Since the re-
duced density matrices of the two subsystems are known,
the state should simply be replaced by the tensor product
state of these reduced density matrices.

The following set of states can easily be disentangled:

jF1� �
1
p

2
�j00� 1 j11��;

jF2� �
1
p

2
�j00� 2 j11�� .

(3)

To disentangle them, Nathan’ s machine uses an ancilla
which is another pair of particles in a maximally entangled
state (e.g., the singlet state) in any basis. Nathan’ s
machine swaps one of the above particles with one of the
members of the added pair and traces out the ancillary
particles. As a result, the state of the remaining two
particles (one from each entangled pair) is

�1�4� �j00� �00j1 j01� �01j1 j10� �10j1 j11� �11j� , (4)

the completely mixed state in four dimensions. This set
provides a trivial example of the ability to perform the dis-
entanglement process. It is a trivial case of disentangle-
ment, since the two states are orthogonal: Thus, they can
first be measured and distinguished, and then, once the
state is known, clearly it can be disentangled.

However, exactly the same disentanglement process
can be used to successfully disentangle nontrivial sets of
states. Let the basis used for the two states be a different
basis (and not the same basis), so the first state is still
jF1�, and the second state is

jF0
2� �

1
p

2
�j0000� 2 j1010�� . (5)

The same process of disentanglement still works, while
now the states are nonorthogonal and cannot always be
successfully distinguished. Hence, this disentanglement
process is nontrivial. Note that the same process also
works successfully when more than two maximally en-
tangled states are used as the possible inputs.

We now prove that there are infinitely many sets of
states that cannot be disentangled into product states. Our
proof here follows from Terno’s method, with the addition
of using the Schmidt decomposition to analyze a larger
class of states. The most general form of two entangled
states can always be presented (by an appropriate choice
of bases) as jc0� � cosf0j00� 1 sinf0j11� and jc1� �
cosf1j0000� 1 sinf1j1010�. To prove that there are states
for which disentanglement into tensor product states is
impossible, let us restrict ourselves to the simpler subclass

jc0� � cosfj00� 1 sinfj11� ,

jc1� � cosfj0000� 1 sinfj1010� .
(6)
1452
There exists some basis

j000� �

µ
1
0

∂
; j100� �

µ
0
1

∂
, (7)

such that the bases vectors j0�; j1� and j00�; j10� become

j0� �

µ
cosu
sinu

∂
; j1� �

µ
sinu

2 cosu

∂
, (8)

and

j00� �

µ
cosu

2 sinu

∂
; j10� �

µ
sinu

cosu

∂
, (9)

respectively, in that basis. The states (6) are now

jc0� � cf

µ
cu

su

∂ µ
cu

su

∂
1 sf

µ
su

2cu

∂ µ
su

2cu

∂
,

jc1� � cf

µ
cu

2su

∂ µ
cu

2su

∂
1 sf

µ
su

cu

∂ µ
su

cu

∂
,

(10)

with cf � cosf, etc. The overlap of the two states is
OL � �c0 jc1� � cos22u 1 sin2f sin22u. The reduced
states are given by

r̂0 � cf
2

µ
cu

2 cusu

cusu su
2

∂
1 sf

2

µ
su

2 2cusu

2cusu cu
2

∂
,

r̂1 � cu
2

µ
cu

2 2cusu

2cusu su
2

∂
1 sf

2

µ
su

2 cusu

cusu cu
2

∂
.

(11)

Thus, the state after the disentanglement into tensor
product states is �rdisent�0 � r̂0r̂0 or �rdisent�1 � r̂1r̂1.

The minimal probability of error for distinguishing
two states [8] is given by PE �

1
2 2

1
4 Trjr0 2 r1j. For

two pure states there is a simpler expression: PE �
1
2 2

1
2

p
�1 2 OL2�. Thus,

PEent �
1
2

2
1
2

q
�1 2 �c2u

2 1 s2fs2u
2�2� (12)

for the two initial entangled states. This probability of
error is minimal, hence it cannot be reduced by any
physical process. Therefore, if, for some u and f, the
disentanglement into the tensor product states reduces the
PE, then that process is nonphysical.

The difference of the states obtained after disentangling
into tensor product states is Ddisent � r̂0r̂0 2 r̂1r̂1. This
matrix is

Ddisent � cos2f sin2u

0
BBB@

0 a a 0
a 0 0 b
a 0 0 b
0 b b 0

1
CCCA , (13)

with a � cos2f cos2u 1 sin2f sin2u and b � cos2f 3
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sin2u 1 sin2f cos2u. After diagonalization, we can cal-
culate the trace-norm, so finally we get

PEdisent �
1
2

2
1
p

2
sin2u cos2f

p
a2 1 b2 ,

�
1
2

2
1
2

s2uc2f

q
1 1 c2f

2c2u
2 .

(14)

We can now observe that there are values of u and
f, e.g., u � f � p�8, for which the outcomes of the
disentanglement process are illegitimate since they satisfy
PEdisent , PEent. Once these outcomes are illegitimate
the disentanglement process leading to these outcomes is
nonphysical, proving that a disentangling machine which
disentangles the states jc0� and jc1� cannot exist for these
values of u and f. Therefore, this analysis provides
a proof (similar to Terno’ s proof [4]) that a universal
machine performing disentanglement into tensor product
states cannot exist.

The tools used so far (to analyze disentanglement into
tensor product states) are not easily generalized to the case
of disentanglement into separable states, since in the latter
case the output is not unique. Luckily, much simpler tools
are found here to be sufficient. Let us recall some proofs
of the no-cloning argument, since the methods we shall
use here are quite similar to those used in the no-cloning
argument. Let the cloner obtain an unknown state and try
to clone it. To prove that this is impossible, it is enough to
provide one set of states for which the cloner cannot clone
an arbitrary state in this set. Let the sender and the cloner
use three states j0�, j1�, and j1� � �1�

p
2 � �j0� 1 j1��.

The most general process which can be used here in
the attempt to clone the unknown state from this set is
to attach an ancilla in an arbitrary dimension and in a
known state (say jE�), to transform the entire system using
an arbitrary unitary transformation, and to trace out the
unrequired parts of the ancilla. In order to clone the states
j0� and j1� the transformations are restricted to be

jE0� ! jE000�; jE1� ! jE111� , (15)

and once the remaining ancilla is traced out, the cloning
process is completed. Because of linearity, this fully
determines the transformation of the last state to be

jE1� !
1
p

2
�jE000� 1 jE111�� , (16)

while a cloning process should yield

jE1� ! jE111� . (17)

The contradiction is clearly apparent since, once the
remaining ancilla is traced out, the second expression
has a nonzero amplitude for the term j01� while the
first expression does not. The conventional way [6]
of proving the no-cloning theorem (using only two
states, say j0�, and j1�) is to compare the overlap
before and after the transformation (it must be equal
due to the unitarity of quantum mechanics): We obtain
that j�E jE� �0 j1�j � j�E0 jE1� �0 j1� �0 j1�j. Hence
1 � j�E0 jE1� �0 j1�j which is obviously wrong since
j�E0 jE1�j # 1 and j�0 j1�j , 1.

We shall now use the linearity of quantum mechanics
to show that there are states that cannot be disentangled
into tensor product states, but can only be disentangled
into a mixture of tensor product states. Surprisingly, our
proof is mainly based on the disentanglement of product
states, that is, on the disentanglement of states which are
not even entangled before the disentanglement process.
The reason for the usefulness of such states is that they
provide rigid restrictions on the allowed transformations:
When a successful disentanglement is applied onto any
pure product state, the state must be left unmodified. That
is, up to an overall phase,

j00� ! j00� (18)

(in an appropriate basis).
The following set of states cannot be disentangled into

product states:

jc0� � j00� ,

jc1� � j11� , (19)

jc2� � j00� 1 j11� .

We shall assume that these states can be disentangled into
product states and we shall reach a contradiction. Note
that the resulting states should be jc0� and jc1� in the first
two cases [see Eq. (18)], and the resulting state should be
the completely mixed state (in four dimensions) in the last
case [see Eq. (4)].

The most general process which can be used here is
to attach an ancilla in an arbitrary dimension and in a
known state (say jE�), to transform the entire system using
an arbitrary unitary transformation, and to trace out the
ancilla. In order to avoid changing the states jc0� and
jc1�, the transformations are restricted to be

jEc0� � jE00� ! jE000� ;

jEc1� � jE11� ! jE111� .
(20)

As in the no-cloning argument, these transformations fully
determine the transformation of the last state to be

jEc2� !
1
p

2
�jE000� 1 jE111�� . (21)

Once we trace out the ancilla, the resulting state is still
entangled unless jE0� and jE1� are orthogonal. The proof
of that statement is as follows: Without loss of general-
ity the states jE0� and jE1� can be written as jE0� � j0�
and jE1� � aj0� 1 bj1� with ja2j 1 jb2j � 1. Thus,
1453
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jEc2� ! 1
p

2
j0� �j00� 1 aj11�� 1

b
p

2
j111�. When the an-

cilla is traced out the remaining state is
0
BBB@

1�2 0 0 a��2
0 0 0 0
0 0 0 0

a�2 0 0 1�2

1
CCCA . (22)

The resulting state is entangled unless a � 0. Thus, in
a successful disentanglement process a � 0 and hence,
jE1� � eiuj1�. The resulting state, however, is not a
tensor product state, thus the above set of states cannot
be disentangled into tensor product states.

At the same time, this example also shows that the
above set of states can be disentangled into a mixture
of tensor product states. The state (22) still has the
correct reduced density matrices for each subsystem—the
completely mixed state in two dimensions. With a � 0,
the resulting state is �1�2� �j00� �00j 1 j11� �11j�, so we
succeeded in showing an example where the states can
only be disentangled into a separable state, but not into a
tensor product state.

Our result resembles a result regarding two commuting
mixed states [9]: these states cannot be cloned, but they
can be broadcast. That is, the resulting state of the cloning
device cannot be a tensor product of states which are
equal to the original states, but can be a separable state
whose reduced density matrices are equal to the original
states [10].

At this point, the main question (raised by [4] and [5])
is still left open: Can there be a universal disentangling
machine? That is, can there exist a machine that dis-
entangles any set of states into separable states? We shall
now show that such a machine cannot exist.

Our result is obtained by combining several of the
previous techniques: the use of linearity, unitarity, and the
disentanglement of product states.

Consider the following set of states:

jc0� � j00� ,

jc1� � j11� ,

jc2� � �1�
p

2 � �j00� 1 j11�� ,
(23)

jc3� � j11� ,

in which we added the state jc3� to the previous set. This
set of states cannot be disentangled even into separable
states.

The allowed transformations are now more restricted
since, in addition to [Eq. (20)], the state jc3� must also
not be changed by the disentangling machine,

jEc3� � jE11� ! jE111� . (24)

Because of unitarity, we obtain j�E jE� �0 j1� �0 j1�j �
j�E0 jE1� �0 j1� �0 j1�j, and also j�E jE� �1 j1� 3

�1 j1�j � j�E1 jE1� �1 j1� �1 j1�j. These expressions
yield 1 � j�E0 jE1�j, and 1 � j�E1 jE1�j, from which
1454
we conclude that eix jE0� � jE1�. Recall that we already
found that jE0� � j0� and jE1� � eiuj1� (in some basis),
but now we obtain jE1� � eix j0�. Since the two require-
ments contradict each other, the proof that the above set
of states cannot be disentangled (not even to a separable
state) is completed. Thus, we have proved that a univer-
sal disentangling machine cannot exist. In other words—
a single quantum cannot be disentangled.

This result resembles a result regarding two noncom-
muting mixed states [9]: these states cannot be cloned,
and furthermore, they cannot be broadcast.

To summarize, we provided a thorough analysis of
disentanglement processes, and we proved that a single
quantum cannot be disentangled, that is, the (quantum)
nonlocality of an arbitrary state cannot be transformed
into classical correlations.

Interestingly, we used a set of four states to prove this,
but we conjecture that there are smaller sets that could be
used to establish the same conclusion.

The no-cloning of states of composite systems was in-
vestigated recently [7,11], and it seems that several in-
teresting connections between these works and the idea
of disentanglement can be further explored. For instance,
one can probably find systems where the states can only
be disentangled (or only be disentangled into product
states) if the two subsystems are available together, but
cannot be disentangled if the subsystems are available one
at a time (with similarity to [7]), or cannot be disentangled
if only bilocal superoperators can be used for the disentan-
glement process (with similarity to [11]).
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