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Unconditionally Secure Bit Commitment
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We describe a new classical bit commitment protocol based on cryptographic constraints imposed by
special relativity. The protocol is unconditionally secure against classical or quantum attacks. It evades
the no-go results of Mayers, Lo, and Chau by requiring from Alice a sequence of communications,
including a postrevelation verification, each of which is guaranteed to be independent of its predecessor.

PACS numbers: 03.67.–a, 03.65.Bz, 42.50.Dv
The discovery of secure quantum key distribution
[1] and other applications of quantum information has
excited much interest in the general question of precisely
which cryptographic tasks can be guaranteed secure by
physical principles. In particular, several papers [2–10]
have addressed the question of whether security can be
physically guaranteed for the key cryptographic primitive
of bit commitment.

In a bit commitment protocol Alice and Bob exchange
data in such a way that Bob obtains an encoding of a bit
chosen by Alice. For the protocol to be secure against
Bob, it must guarantee that Bob cannot decode the bit un-
til Alice chooses to reveal it by supplying further informa-
tion. For it to be secure against Alice, it must guarantee
that the bit is genuinely fixed between commitment and
revelation: there must not be two different decodings of
the bit which leave Alice free to reveal either 0 or 1, as
she wishes.

Bit commitment per se has obvious practical appli-
cations. For example, a secure bit commitment proto-
col would allow Alice to make predictions which could
be verified post hoc without giving Bob any possibil-
ity of extracting information before the predicted event.
More generally, bit commitment is a powerful crypto-
graphic primitive. A trusted protocol for committing a
classical bit could be used as a building block for pro-
tocols implementing a wide range of other cryptographic
tasks, including coin tossing [11], zero-knowledge proofs
[12], oblivious transfer [13], and (hence) secure two-party
computation [14].

In the standard cryptographic scenario, Alice and Bob
each occupy a laboratory. Each trusts the integrity of their
own laboratory but nothing outside. It is usually implicitly
assumed that the presumed separation of the laboratories is
large compared to their size. In this situation, a protocol
must allow for a time lapse between the transmission
of a signal and its receipt. However, neither party can
be certain whether the other actually is confined to a
distant laboratory: if it were advantageous, Bob might
set up a secret laboratory adjacent to Alice’s, or vice
versa. Allowing for special relativity gives no security
advantage under these conditions, since no time lapse can
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be guaranteed, so that no arrangement of timings in a
protocol can guarantee that messages sent by Alice and
by Bob were each generated without knowledge of the
other. Thus they are effectively restricted to protocols in
which they sequentially exchange messages, each waiting
to receive one message before sending the next, and their
communications may as well be taken to be nonrelativistic.

We refer to any bit commitment protocol that relies
on this scenario as a standard protocol. We refer to
a protocol as classical if the protocol can be followed
by exchanging classical information and as quantum if
it requires the exchange of quantum information. We
follow the formal definitions of perfect and unconditional
security given in Ref. [6].

All standard classical bit commitment protocols are in
principle insecure, though very good practical security can
be attained. Several quantum bit commitment schemes
have been proposed (e.g., [2–5]). But all standard quan-
tum bit commitment schemes were also shown by Mayers,
Lo, and Chau [6–9,15] to be insecure. We follow general
usage in referring to the result that unconditionally secure
quantum bit commitment is impossible as the Mayers-Lo-
Chau no-go theorem or MLC theorem.

In practice, current bit commitment protocols rely for
their security on the assumption that some computational
task is sufficiently hard that it cannot be carried out during
the lifetime of the protocol. While those assumptions are
generally well founded, they never absolutely guarantee
security. Moreover, the possible development of quan-
tum computers renders the computational assumptions un-
derlying present day bit commitment protocols distinctly
vulnerable. The MLC theorem tells us that quantum tech-
nology offers no compensating solution. Lo has also
shown that other two-party cryptographic tasks cannot be
securely implemented by quantum communication [16].

All of these no-go theorems implicitly assume that
relativity can be neglected, as is indeed the case for
standard protocols. Here we describe a protocol which
uses a variant of the standard cryptographic scenario in
which each party controls two separated sites. Relativity
plays an essential role in this protocol: its security is
guaranteed by the impossibility of superluminal signaling.
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Variations of the standard cryptographic scenario of
this type, in which special relativity plays a role, do not
seem to have been widely considered. Such protocols
were, however, mentioned briefly in Mayers’ announce-
ment of the no-go theorem [6] for unconditionally secure
quantum bit commitment, where it is suggested that the
no-go theorem applies also to quantum bit commitment
protocols based on special relativity.

The validity of the MLC theorem in the standard
scenario is not disputed here, but we argue for the
opposite conclusion when special relativity is taken into
account. We first describe a relativistic cryptographic
scenario in which each party controls laboratories in two
separated locations. These laboratories must be near to
mutually agreed coordinates, and the protocol includes
tests to verify that this is so. This should be stressed:
neither party needs to trust the other’s word as to the
locations of their laboratories, nor do these locations need
to be declared precisely.

Next, we describe a bit commitment protocol in this
scenario. The protocol is classical: it does not require
the transmission or processing of quantum information.
Nothing in it prevents either party from using quantum
information transmissions. However, the classicality of
the information could be enforced by a reasonable extra
cryptographic assumption, namely, the use of channels
trusted by both parties to be decohering. Its security can
thus sensibly be analyzed by considering it either as a
classical protocol or a quantum protocol. It is, we argue,
unconditionally secure in either case.

Ben-Or et al. (BGKW) some time ago [17] proposed
an interesting bit commitment protocol which, like that
presented here, depends on separating Alice into two
parties, in this case isolated by Faraday cages. Its security
against quantum attacks has been discussed by Brassard
et al. (BCMS) [10]. Among the significant differences
between the Ben-Or et al. protocol and the one below is
the fact that the BGKW protocol gives Bob no reliable
test for ensuring that the two Alices are indeed unable
to communicate: unlike the present protocol, its security
is not guaranteed by physical laws. If the isolation is
ensured by special relativity, the BGKW protocol can be
seen as a precursor of that described here.

The possibility of ensuring temporary isolation by
special relativity was noted by BCMS [10]. (BCMS
follow Mayers in concluding that unconditionally secure
bit commitment is impossible.) However, no complete
discussion of the uses of relativity in obviating the need
for trust seems to have previously appeared in print.
As the next section explains, the protocol given here
uses a relativistic scenario in which Alice and Bob are
treated symmetrically and in which it is demonstrably
unnecessary for either party to trust in the locations of the
other. Finally, the key new feature of our protocol is the
use of a sequence of communications to maintain security
indefinitely.
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Cryptography and relativity.—We now consider a
cryptographic scenario in which two parties carry out op-
erations from separated regions in Minkowski spacetime.
In fact, it is sufficient for the local geometry to be approxi-
mately Minkowski, so that the protocol can indeed be se-
curely implemented in the real world. However, strictly
speaking, even assuming an approximately Minkowski
background violates the cryptographic rule that the world
outside the laboratory cannot be trusted. Alice and Bob
need to be confident that the geometry of the spacetime
region is indeed nearly flat, that they have a correct de-
scription of the local light cones, and that there are no
wormholes or other mechanisms allowing signaling be-
tween spacelike separated points.

These caveats are rather irrelevant for practical applica-
tions at present. It seems safe, for example, to neglect the
danger that a protocol carried out within the solar system
might be subverted by one of the parties surreptitiously
introducing very massive bodies. Still, there is a theoreti-
cal case for distinguishing unconditional security based on
special relativity and on general relativity. We take spe-
cial relativity to be the underlying theory here, and we set
c � 1.

Consider now the following arrangement. Alice and
Bob agree on a frame, on global coordinates, and on the
location of two sites x1, x2. Alice and Bob are required to
erect laboratories, including sending and receiving stations,
within a distance d of the sites, where Dx � jx1 2 x2j ¿
d. The precise locations of the laboratories need not be
disclosed: it is sufficient that test signals sent out from each
of Bob’s laboratories receive a response within time 2d

from Alice. In the protocol below, Bob need not reply
immediately to Alice’s communications, but the parties
will probably want to test that Bob likewise replies to
Alice’s test signals within time 2d in order to confirm that
the channels are working properly in both directions. The
laboratories need not be restricted in size or shape, except
that they must not overlap. This is implied by the standard
assumption that Alice and Bob are each confident of the
security of their own laboratories. We refer to the labo-
ratories in the vicinity of xi as Ai and Bi , for i � 1 or 2.

We assume that A1 and A2 are collaborating with com-
plete mutual trust and with prearranged agreements on
how to proceed, to the extent that we identify them to-
gether simply as Alice; similarly B1 and B2 are identified
as Bob. For example, considering embassies as faithful
representatives of their respective governments, we could
take A1 to be the Andorran embassy in Belize, B1, and B2
the Belizean embassy in Andorra, A2.

A bit commitment protocol.—We first define a classical
protocol and then examine its security against quantum
attacks. Alice and Bob first agree on a large number N .
For simplicity we take N � 2m, where the integer m is
the security parameter for the protocol. All the arithmetic
in the protocol is carried out modulo 2m. Before the
protocol begins, A1 and A2 agree on a list �m1, m2, . . .�
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of independently chosen random numbers in the range
0, 1, . . . , N 2 1. The length of the list that will eventually
be required is an exponential function of the anticipated
time between commitment and unveiling. Alice and Bob
also fix a time interval Dt ø Dx during which each round
of communication between Ai and Bi (for i � 1 or 2) must
be completed.

The protocol now proceeds as follows. Between time
t � 0 and t � Dt, B1 sends A1 a labeled pair �n1

0, n1
1�

of randomly chosen distinct numbers in the range
0, 1, . . . , N 2 1. On receiving these numbers, A1 returns
either the number n1

0 1 m1 or n1
1 1 m1, depending

whether she wants to commit a 0 or a 1, quickly enough
that her message ends by time t � d 1 2Dt and so
can be received by B1 before time 2d 1 2Dt. At
time t � T � Dx 2 2Dt 2 3d, B2 asks A2 to com-
mit to him the binary form a1

m21 · · · a1
0 of m1. This

is achieved by sending A2 a set of m labeled pairs
�n2

0, n2
1�, . . . , �nm11

0 , nm11
1 �, and asking A2 to return

n2
a1

0
1 m2, . . . , nm11

a1
m21

1 mm11. Bob’s message is to be
completed by time T 1 Dt and Alice’s by T 1 d 1

2Dt. Next, at time t � 2T , B1 asks A1 to commit the
binary forms of the random numbers m2, . . . , mm11 used
by A2. At time t � 3T , B2 asks A2 to commit the binary
forms of the random numbers mm12, . . . , mm21m11 used
by A1 in this commitment; and so forth. These later
exchanges are all similarly time, so that Bob’s �N 1 1�th
communication is completed by NT 1 Dt and Alice’s
by NT 1 d 1 2Dt. The random pairs sent by the Bi

are all drawn from independent uniform distributions.
These commitments continue at regular intervals sepa-

rated by T , consuming increasingly long segments of the
random string shared by the Ai , until one or the other of
the Ai —or perhaps both, at spacelike separated points—
chooses to unveil the originally committed bit. It is as-
sumed that the Ai have previously agreed under which
conditions either of them will unveil. For A1 to unveil,
she reveals to B1 the set of random numbers used by A2
in her last set of commitments; similarly, A2 unveils by
revealing to B2 the random numbers last used by A1. To
check the unveiling, B1 and B2 send the unveiling data
and all previous commitments to some representative of
Bob. This representative need not be in the same location
as one of the Bi: if he is, only the other Bi need send data.

In any case, Bob cannot verify the unveiling at any
point outside the intersection of the future light cones of
the points from which the Ai sent their last communica-
tions—i.e., the unveiling and the last set of commitments.
In this sense, the protocol is not complete at the moment
of unveiling: it becomes complete only when Bob has all
the necessary data in one place. The need to wait for re-
ceipt of information which is unknown to the unveiler Ai

(since it depends on the last set of pairs sent by B32i)
and to the unveilee Bi (since it includes the last set of
commitments sent by A32i) means that the protocol is not
vulnerable to a generalized Mayers-Lo-Chau attack.
The protocol is clearly secure against Bob, who re-
ceives what are to him random numbers throughout the
protocol, until unveiling. We give here informal argu-
ments for the insecurity against Alice.

Security against classical attacks.—Can Alice unveil
a 0, having committed a 1, or vice versa? Note first
that if A2 unveils at times between 0 and T , the protocol
is clearly secure. Now suppose for definiteness that A1
unveils at time between NT and �N 1 1�T . If the Ai have
followed the protocol throughout, and A1 now gives B1
the random numbers used by A2 in her last commitment
outside the future light cone of this communication, Bob
will—once B1 and B2 have had time to communicate—
be able to decode successive commitments back through
to obtain the originally committed bit.

On the other hand, if A1 gives B1 any other set of
random numbers, they will fail to correspond to a valid set
of bit commitments with probability at least �1 2 1�N�,
since A1 cannot yet know the pairs �ni

0, ni
1� supplied for

B2 for A2’s last commitment. So A1 must supply the
correct numbers. Now if A2’s last commitment was not
of the random numbers previously used by A1, a similar
problem occurs. Hence, by induction on the total number
of commitments, the protocol is secure against Alice.

Security against quantum attacks.—Quantum attacks
give Bob no advantage against an honest Alice. His only
extra freedom is to send Alice superposition states instead
of classical descriptions of the pairs �ni

0, ni
1�, and since

she can legitimately carry out measurements on them and
follow the classical protocol, this gains him nothing. We
can therefore assume that Bob sends classical signals to
Alice, and that at unveiling he carries out measurements
on any superposed quantum signals sent by her, so as to
obtain a definite set of numbers for each commitment.

Alice’s position is a little more complicated to analyze.
Quantum theory clearly opens up new strategies for
her. For example, following the general Mayers-Lo-
Chau strategy [6,8,10] for cheating standard quantum
bit commitment schemes, she can keep all her random
choices at the quantum level. To do this, instead of
sharing a list of random numbers from 0 to N 2 1 before
the protocol, A1 and A2 share entangled “quantum dice”
in correlated states of the form

PN21
i�0 aiji� �ij.

Alice could also commit a random quantum bit—a
state of the form aj0� 1 bj1�—rather than a fixed clas-
sical bit and keep the committed quantum bit in superpo-
sition throughout, without detectably deviating from the
protocol. This is no advantage if the protocol is used
for committing a prediction or some other stand-alone
application. Alice can always commit a randomly cho-
sen classical bit in any bit commitment protocol, classical
or quantum. But it does allow Alice more general co-
herent quantum attacks to be used on schemes of which
the bit commitment is a subprotocol—a property which
is shared by other classical bit commitment schemes [10]
and which means that classical cryptographic reductions
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involving such bit commitments cannot naively be carried
over into the quantum arena.

Modulo this freedom, the informal security arguments
above carry over to the quantum case. Alice has no cheat-
ing strategy by which she can initially commit the qubit
aj0� 1 bj1� and appear to follow through the protocol for
a previously agreed number of steps, while actually carry-
ing out operations which give her probability greater than
jaj2 1 O�1�N� of successfully unveiling a 0 or greater
than jbj2 1 O�1�N� of successfully unveiling a 1 at the
end of the protocol.

Comments.—The protocol gives a theoretical solution
to the problem of finding bit commitment schemes uncon-
ditionally secure over arbitrarily long time intervals. As its
implementation requires channel capacity that, for a fixed
separation, increases exponentially with the commitment
time, it is not a practical solution to the problem of long
term bit commitment. For example, taking the security
parameter m � 10 and the separation Dx � 0.1 sec, and
assuming 100 gigabaud channels, the number of rounds of
iterated commitments presently practical is roughly ten.

Extending the length of a secure protocol even by this
modest factor might be worthwhile in some applications,
particularly in a quantum computational era in which
perhaps no computational bounds may be trusted. If
absolute security is required, separated sites are necessary;
if separated sites are to be used, any way of reducing
the necessary separation for a given protocol duration is
desirable.

For the moment, though, we see the protocol’s main in-
terest as an existence theorem. It demonstrates that taking
special relativity into account changes the cryptographic
security attainable through information exchanges, and it
shows that the interplay between special relativity, crypto-
graphic security, and channel capacity is a fertile area for
investigation.

The reason relativity helps is simple. In effect, it al-
lows Alice and Bob to construct a communication chan-
nel with a time delay which they can both trust, despite
their mistrust of the world outside their laboratories. Any
trusted time delayed channel allows temporary bit com-
mitment, and the above protocol demonstrates that indefi-
nite bit commitment can then be achieved by recursively
iterating bit commitments across the channel.

It is worth noting that trusted, although not perfectly
secure, time delay could also be enforced by physical
means. Alice and Bob could, for example, watch car-
rier pigeons going between their laboratories. It could
also be enforced by a sequence of computational bounds.
Suppose, for example, that Alice and Bob can always
be confident of keeping abreast of technological devel-
opments, in the sense that at any given time they can find
a computational task which they are confident cannot be
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solved within one time unit. They can then, for as long as
their channel capacity permits, use the iteration strategy
above to achieve indefinitely secure bit commitment from
a sequence of standard classical bit commitment protocols
which use their temporarily secure bounds and are secure
against the receiver. This may, in fact, be a more practi-
cal application in the shorter term.
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