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Potts Model with Long-Range Interactions in One Dimension
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We study the nature of the phase transition of theq-state Potts model with long-range ferromagneti
interactions decaying as1�rd1s , in dimensiond � 1, using a histogram Monte Carlo (MC) technique
The model can exhibit a first-order transition or a second-order phase transition with nonstandard c
exponents. The critical value ofq above which a first-order transition occurs decreases with decreas
s, from qc � 8 for s � 1 to qc � 2 for s � 0.3. Detailed results for variouss will be shown and
discussed. Mean-field calculation confirms the tendency of our MC results.
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The q-state Potts model limited to nearest-neighb
(NN) interactions has been extensively investigated [1
In particular, the nature of the phase transition is exac
known in low dimensions [1]. For example, in one dimen
sion (1D) there is no phase transition at finite temperatu
(T ) for any q, while in d � 2 the transition is of second
order for q # 4 and of first order forq $ 5. However,
much less is known when long-range (LR) interactions a
included. For instance, when next-nearest-neighbor int
actions compete with the NN one, the system becom
frustrated. Though much interesting physics is recen
discovered for such systems [2], well-established theore
cal methods often fail to predict correct behaviors.

In this paper, we are interested in the effect of LR in
teractions decaying with distancer as 1�rd1s , in a 1D
system. In the 1D Ising case (q � 2) with these LR in-
teractions some studies have been done. It is known t
it exhibits LR order at finiteT if s # 1 and no phase
transition if s . 1 [3–10]. Fisheret al. have studied a
general system withn-component order parameter [11
using a renormalization group (RG) method. The exp
nents were shown to depend on the values ofn, s, and
d. However, fors . 2, they should take the short-rang
(SR) exponents for alld. A RG expansion in1 2 s . 0
has been done by Kosterlitz [12] who obtained1�n �
�2�1 2 s�1�2� whens ! 1 in 1D. We have recently cal-
culated the critical exponents of the continuous Ising mod
(i.e., spin value varies continuously between21 and 1) by
Monte Carlo (MC) simulation [13,14]. Though the gen
eral aspects of our results are in agreement with the t
dency predicted by RG calculations for the discrete Isin
model, the details are somewhat different. For instance
d � 1, for the case wheres � 1, our result shows a large
value ofn but far from the divergent value predicted fo
the Ising model [12]. Ind � 2, our exponents indicate
that they take the SR values only whens $ 3, instead
of s . 2 given by the RG calculations for the Ising cas
[11]. Moreover, in the classical regime our results do n
verify RG results. In view of this, it would be interesting
to perform MC simulations for other models with LR in
teractions to compare with previous theories.
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While the Ising case has been widely investigate
just a few works have been done in non-Ising mod
among which one can mention our work on the continuo
Ising model [13,14], a paper by Glumac and Uzelac [1
investigating the 1Dq-state Potts model up toq � 64
using a transfer matrix method, and the works by Pri
and Lubensky [16] and by Theumann and Gusmao [
using a RG expansion ine � 3s 2 d to calculate critical
exponents of the Potts model.

In the LR case, except the early work ford � 1 with
very small sizes [4], and our previous work [13,14], M
techniques have not been used. This is partially due
the long computing time. The absence of reliable M
results, in particular, in the non-Ising case has motiva
the present work.

We investigate here the phase transition in the
q-state Potts model using standard MC simulations a
the MC histogram method for variouss. One of our
striking results is the existence of a phase transition wh
becomes of first order forq . qc whereqc depends on
s. The critical exponents whenq , qc are displayed. A
mean-field (MF) calculation is shown to confirm our M
tendency.

Theq-state Potts model is defined by

H � 2
X
�i,j�

Jijdmi ,mj , (1)

where mi is a q-state Potts spin at sitei, i.e., mi �
1, 2, . . . , q, andJij � 1�ji 2 jjd1s . All interactions per-
mitted by the periodic boundary conditions are taken in
account, i.e.,ji 2 jj # L�2 whereL is the system size.

We use first the standard MC simulations to loca
ize for each size the transition temperatureT0�L�: the
equilibrating time is from 100 000 to 200 000 MC step
per spin (MCS�spin) and the averaging time is from
500 000 to 1 000 000 MCS�spin. Next, for histogram
measurements atT0�L�, we discard1 3 106 MCS�spin
and measure between 3 and5 3 106 MCS�spin. The
histogram [18]H�E� are then used to calculate canon
cal probabilities at temperaturesT around T0�L�
by P�E, T � � H�E� exp�2DbE��

P
E H�E� exp�2DbE�
© 1999 The American Physical Society
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FIG. 1. U vs T for s � 1 with q � 3. Void circles, filled
triangles, void triangles, filled circles, and crosses are for
L � 50, 100, 150, 400, and 900, respectively.

where Db � 1�kBT0�L� 2 1�kBT . The thermal average
of a physical quantity A is then calculated as a continuous
function of T by �A� �

P
E AP�E, T �.

We have calculated the averaged order parameter �M�,
averaged total energy �E�, specific heat Cy , susceptibility
x , first-order cumulant of the energy CU , nth order
cumulant of the order parameter Vn for n � 1 and
2, defined as follows: �M� � ��qr 2 1���q 2 1��, r

is defined as r � L2d max�M1, M2, . . . , Mq�, Mi being
the number of spins in the state i, �E� � �H �, Cy �

1
kBT 2 ��E2� 2 �E�2�, x �

1
kBT ��M2� 2 �M�2�, CU � 1 2

� �E4�
3�E2�2 �, and Vn � �� ≠ ln Mn

≠�1�kBT� �� � � �MnE�
�Mn� � 2 �E�.

Plotting these quantities versus T , we obtain their
maximum or minimum, for a given L. A transition
temperature can then be identified for each quantity. The
transition temperatures for these quantities coincide
only at infinite L. For large L, these quantities are
expected to scale with L as follows: Vmin

1 ~ L1�n ,
Vmin

2 ~ L1�n , Cmax
y � C0 1 C1La�n , and xmax ~ Lg�n

at their respective “ transition” temperatures Tc�L�, CU �
CU�Tc�`�� 1 AL2a�n , MTc�`� ~ L2b�n , and Tc�L� �
Tc�`� 1 CAL21�n , where A, C0, C1, CA are constants.
We estimated n independently from Vmin

1 and Vmin
2 . With

these values we calculated g from xmax. We estimated
Tc�`� by using the last expression for each observable.
Using Tc�`� we calculated b from MTc�`�. The Rush-
brooke scaling law a 1 2b 1 g � 2 gives a. Finally,
using the hyperscaling relationship, we can estimate the
effective dimension by deff � �2 2 a�n21 and h by
g � �2 2 h�n.

The values of s were chosen in the classical regime
(0 , s , 0.5) and in the nonclassical regime (0.5 ,

s # 1) where exponents are expected to depend on s,
n, and d [11]. For a given set (s, q), we performed MC
simulations where the order parameter per site m, energy
per site U, Cy , and x were measured as functions of T
for varying L. Whenever the transition is of second order,
FIG. 2. Vmin
1 and Vmin

2 vs L in ln - ln scale for s � 0.7, q �
3 (filled and void circles are for Vmin

1 and Vmin
2 , respectively),

and for s � 1, q � 3 (filled and void triangles are for Vmin
1

and Vmin
2 , respectively). Errors are smaller than the size of

data points.

we calculate the exponents using the histogram technique.
The first-order transition is signaled by a double-peak
distribution of H�E�. We show now an example of
each kind.

For s � 1, the transition is of second order up to
q � 10. Figure 1 shows U versus T with several L for
s � 1 and q � 3. Histogram measurements have been
made and using the formulas given above we obtain the
exponents. Figure 2 shows Vmin

1 and Vmin
2 versus L in the

ln - ln scale. The data lie nicely on straight lines of equal
slopes yielding n � 2.272�5�. The errors were estimated
from the line-fitting procedure. Systematic errors from
estimates of T0�L� were much smaller. Figure 3 shows
xmax versus L in the ln - ln scale where the slope is
g�n. One obtains g � 2.196�5�. The scaling relations
then give a � 20.272�5� and b � 0.038�5�. For q .

8, the transition is of first order. We show in Fig. 4

FIG. 3. xmax vs L in ln - ln scale for s � 1, q � 3 (upper
curve) and for s � 0.7, q � 3 (lower curve). Errors are
smaller than the size of data points.
15
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FIG. 4. Energy histograms for s � 1, q � 3 (upper left);
s � 1, q � 15 (upper right); s � 0.7, q � 7 (lower left); and
s � 0.3, q � 5 (lower right), at their transition temperatures.
The single peak (upper left) shows a second-order transition
while double peaks indicate first-order ones (L � 900).

the P�E� taken at the transition temperature for various
set (s, q � 15). The double-peak structure shows a
first-order transition. Our conclusion is that the LR
interactions are responsible not only for the existence of
a phase transition in the Potts model in 1D but also the
existence of a critical q above which the transition is of
first order, similar to the SR case in higher d.

The results for several s and q are displayed in Table I.
Several remarks are in order as follows: (i) For a given s,
there exists a critical value qc above which the transition
is of first order. qc decreases with decreasing s going
from qc � 8 for s � 1 to qc � 2 for s � 0.3. (ii) For a
given s, below qc, the value of n increases with increas-
ing q. We find a large value of n when s � 1, a tendency
predicted for the 1D Ising case [12]. (iii) When the tran-
sition is of second order, for a given q the value of n also
increases with increasing s. (iv) Our results for s � 1
indicate that the transition becomes first order for q . 8,
16
TABLE I. Critical exponents, the order of the transition, and Tc�L� associated with the peak
position of Cy for all studied s.

s q n g a b h Tc

q � 3 2.272(1) 2.196(1) 20.272�1� 0.038 1.034(1) 0.74
q � 5 1.78(1) 1.72(1) 0.21(1) 0.030 1.03(1) 0.65
q � 7 1.64(1) 1.60(1) 0.36(1) 0.020 1.02(1) 0.60

1

q � 9 first-order transition

q � 3 1.46(1) 1.16(1) 0.54(1) 0.15(1) 1.21(1) 1.18
0.7

q � 5 first-order transition

0.3 q � 3 first-order transition

q � 2 second-order transition 1
21 a

q . 2 first-order transition 1��q 2 1�
aMean-field results.
in disagreement with the prediction of Thouless [3], ac-
cording to which in the Ising case (q � 2) with s � 1 the
transition is either of first order or b � 0. (v) Our results
for n are far from those obtained by Glumac and Uzelac
[15] for the standard Potts model: for q � 64 they obtained
n � 1 for s � 1 and for q � 16 they gave n � 0.22 for
s � 0.7, while our results give a first-order transition for
these cases.

As seen, when s becomes small, the transition is of
first order at very small q. In order to understand this,
we have calculated the Landau-Ginzburg free energy for
the limiting case s � 21 where Jij is equal to a constant.
Let us take, for calculation convenience, Jij � 21�2N
where N is the spin total number. We consider a q-state
spin at the ith site

!
S i who can take any of the fol-

lowing states
!
S

1
i ,

!
S

2
i , . . . ,

!
S

q
i . We assume j

!
S ij

2 � 1
and

P
a

!
S

a

i � 0 where a � 1, . . . , q. The last condi-
tion which is similar to that of the Potts clock model
yields �

P
a

!
S

a

i �2 � 0. In other words,
P

a,b
!
S

a

i
!
S

b

i �P
a� !S

a

i �2 1
P

afib� !S
a

i
!
S

b

i � � 0. Defining for a fi

b cosu �
!
S

a

i
!
S

b

i , one obtains q 1 q�q 2 1� cosu � 0
from which one has cosu � 2

1
q21 .

Using the above definitions, we rewrite the Hamilton-
ian (1) as H � 2�1�2N�

PN
i,j�1

!
S i

!
S j where we have

!
S i

!
S j � 1 for

!
S i �

!
S j , or

!
S i

!
S j � cosuij for

!
S i fi

!
S j .

Calculating the partition function and then the free
energy per spin f, one obtains

f� !f � �
1
b

√
1
2

!
f

2
2 ln

"X
�S eb1�2� �f? �S�

#!
, (2)

where
!
f � f

!
S . From the notations given above,

one has

f�f� �
1
b

√
1
2

f2

2 ln

"
eb1�2f 1 �q 2 1�e2b1�2f��q21�

#!
.

(3)
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FIG. 5. MF free energy for q � 2 (upper) and q � 3 (lower)
showing second- and first-order transitions, respectively. For
the upper figure, (a)–(d) are for b � 0.6, 1, 1.4, and 1.6. For
the lower figure, (a)–(d) are for b � 1.8, 1.848, 1.9, and 1.94.

For f ø 1, an expansion of f gives

f�f��
1
2

√
1 2

b

q 2 1

!
f2 1

1
6

2 2 q
�q 2 1�2 b3�2f3

1
1
4!

b2f4h 1 . . . , (4)

where h is a constant. Retaining up to the fourth order
of f, it is easy to see that f develops two mimima,
one at f � 0 and the other at f fi 0 only for q . 2
(see Fig. 5). This means that the first-order transition
sets in for q . 2, confirming the tendency of MC results

FIG. 6. qc versus s. Thin lines are guides to the eye. The
value at s � 21 is the MF result. The other points are MC
results. First-order transitions occur at q . qc.
(Table I). Note that the MF theory becomes exact when
the number of interactions goes to infinity. We show in
Fig. 6 the whole phase diagram. Note that the values
of qc for a given s are integers because we studied the
discrete q-state Potts model. Finally, we mention that
Priest and Lubensky [16] have briefly commented on the
stability of the fixed point with respect to s when LR
interactions exist, but their analysis was concentrated on
the percolation limit (q ! 1). Therefore no indication on
the existence of qc was given. The same remark is for the
work of Theumann and Gusmao [17].

In conclusion, we have studied the standard 1D q-state
Potts model with LR interaction algebraically decaying as
a power law of distance, using MC method. For each
s we found a first-order transition for q larger than
a critical value qc. This is similar to the case of SR
interaction in d � 2 and d � 3. In some sense, the LR
interactions compensate the loss of dimension when going
down to 1D. A MF calculation confirms our MC results.
We believe that the present work will stimulate future
theoretical analysis on the LR Potts model.
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