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Stripesand thet-J Model
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We investigate the two-dimensional model at a hole doping of = % The low-energy states are
uniform (not striped). We find numerous excited states with charge density wave structures, which may
be interpreted as striped phases. Some of these are consistent with neutron scattering data on cuprates
and nickelates. Without additional terms in th&Hamiltonian, stripes can be stabilized only as ground
states through the application of artificial boundary conditions.

PACS numbers: 71.10.Fd, 71.10.Pm, 74.20.Mn

In the search for an understanding of the cuprate supeferm Fermi-liquid-type nodal structure, one disregards the
conductors it is desirable to find a model which capturegpossibility of a nonuniform ground state in which one com-
many of the essential aspects of the environment experponent of the mixture (the antiferromagnetic phase) has no
enced by the electrons in these materials. Because thefmion degrees of freedom. In addition, in the delicate re-
materials are born out of antiferromagnetic insulators bygion of smallJ/z and low doping, spin-back-flow effects
doping, it is somewhat urgent to decide if a simple modebecome very important resulting in the interesting struc-
which begins from the strong electron correlation limit, ture of the hole “polaron” [12]. These effects are known
such as the so-callge model, can explain some features to change the nodal structure of the wave function in a cru-
which result from the electronic degrees of freedom in thecial way in strongly correlated quantum fluids. Therefore
cuprates [1]. Even though the progress made in trying tdixed-node GFMC may be inadequate in this region.
solve thet-J model may be characterized as slow, it gives The phase separation in thieJ model cannot be
some features which are present in these materials. Foealized in the physical system due to the Coulomb
example, some important aspects of the calculated singléateraction [5,6,13]. Instead, such a tendency for phase
hole spectrum [2] are in agreement with the results of theeparation can be satisfied locally by forming stripes or
photoemission data [3]. In addition, the model gives rise tther charge density wave (CDW) structures with little
a two-hole bound state [4] with th&:_,. symmetry which  Coulomb cost [14]. The coupling to lattice distortions
is the believed symmetry of the superconducting state imnay also encourage the formation of stripes [15].
these materials. Experimentally, stripe modulations were first observed

Emery and Kivelson [5] suggested that the cuprates ar# a doped nickelate analog of the cuprates [16],Ni®,4
near an electronic phase separation instability which is prenay be doped with holes by adding oxygen or by
vented by the long-range part of the Coulomb interactionsubstituting strontium for lanthanum. The modulation
In the phase-separated state, the holes cluster togeth6Een with neutron scattering in the doped compounds is
leaving the rest of the system in an antiferromagnet statéonsistent with the holes formingjagonal domain walls
with no holes. Phase separation in themodel has been Separating antiferromagnetic regions of spins. Stripes
studied by a number of techniques which seem to be giwith a variety of widths and hole densities along the
ing conflicting conclusions [6—11]. For example, Hellbergstripes have been observed.
and Manousakis [6] using a stochastic projection method, There is strong evidence for stripe modulations in
an extension of the Green'’s function Monte Carlo (GFMC)the cuprates as well [17]. In kg Ndo4Sr.CuG;,
for lattice fermions, find that theJ model has a region of superconductivity is suppressed at a fillingrof= g, and
phase separation at all interaction strengths. Other tectieutron scattering studies reveattical domain walls of
niques fail to reach this conclusion. Exact diagonalizatiorholes and spins. In these stripes, a hole density,0f
studies of small systems have been used to support [7] arld2 per lattice spacing is observed. These experiments
reject [8] phase separation, while high temperature serigdave prompted renewed theoreucal work on models for
expansions [9] show no phase separation in the physic#ihe cuprates at hole doping=
region of the cuprates. In a recent calculation Calandra Recently White and Scalaplno (WS) found static ver-
et al. [11], using the GFMC approach within the fixed tical stripe order similar to that of the cuprates in the
node approximation, find that the phase boundary for phasgvo-dimensionalt-J model at hole doping: = é using
separation is far from that determined by the high temperaa density matrix renormalization group technique [18,19].
ture series expansions [9] and much closer to that obtainebhese results are surprising due to the fact thattifie
with unconstrained GFMC [6] except in the delicate regionmodel ignores the long-range part of the Coulomb in-
with small hole dopings and/r < 0.4. By using a uni- teraction and couples to no lattice distortions. One sees
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no physical reason for such a simplified model to have a
ground state with a periodic array of interfaces.

In this paper we show that the t-J model at x = % has
a striped ground state on sufficiently small finite systems
with appropriate boundary conditions, such as those used
by WS. However, with more physical periodic boundary
conditions, the same finite systems have lower energy
states that are uniform (not striped). The striped states are
present in the periodic systems, but only as excited states.

The t-J Hamiltonian is written in the subspace with no
doubly occupied sites as

t nin;
H= -t CivCic T HC)+J (S,"S'— )
<%( J ) % J 4
)

Here (ij) enumerates neighboring sites on a square lattice,
c;r(, creates an electron of spin o on site i, n; =
So c;ﬂ,cw, and S; is the spin-% operator. Throughout
this paper, wetaker = 1 and J = 0.35.

Toachieveaholedoping of x = % all calculationswere
carried out on periodic 16-site clusters with two holes.
Periodic clusters may be characterized by their primitive
tranglation vectors a; and a,. There are a large number
of possible 16-site clusters on the two-dimensional square
lattice. Each cluster can support only striped phases that
are commensurate with the periodicity of that particular
cluster [20]. Clusters which have one particularly short
tranglation vector are quasi-one-dimensional and behave
like chains or ladders. We consider only clustersin which
both trandation vectors have a Manhattan length of at
least Iy = |a*| + |a”| = 4. There are seven such clus-
ters, showninTable |. Theseclustersrepresent al possible
guasi-two-dimensional 16-site clusters. Later in the paper,
we examine six eigenstatesin detail. We label these states
by letters, (a) through (), shown next to their correspond-
ing clustersin Table I.

We studied all eigenstates with energy per site £ <
—0.634 for each of the seven periodic clusters using exact
diagonalization. For each cluster, we use all possible
combinations of phases 6 = 0,7 aong each trandation
vector. Severa of these states are stripes or CDWSs, and
these are necessarily degenerate states. The density in a
CDW dtate is characterized by an amplitude A, a wave

TABLE |. Trandation vectors of the seven possible quasi-
two-dimensional 16-site clusters. The letters label eigenstates
examined later in the paper.

No. a ap States
1 (0,4) 4,0)
2 (0,4) (4,1) e.(f)
3 0,4) 4,2)
4 (3,2) 2,—4)
5 (3,1) (1,-5) (d)
6 (2,2) 4,—4) (a),(b)
7 (2,2) (3,-5) (©)

vector k, and an arbitrary phase ¢». Thus the hole density
hy = 1 — n, onsiter isgiven by
he = h + Acosk - r + ¢), 2

where the average density is h = é The phase ¢ de-
pends on the particular linear combination of degenerate
states taken. A different (real) linear combination will
change ¢, moving the stripe, but A isinvariant.

The amplitudes A of the CDW in every low-energy state
are plotted in Fig. 1 as afunction of energy per site. The
lowest energy states are uniform and have CDW amplitude
A = 0. For energies above £ = —0.645 some CDW
states are stabilized. The maximum CDW amplitude of
these states increases with increasing energy.

We examine in detail the six labeled states in Fig. 1.
State (a) is the lowest energy state and is uniform. States
(b) through (f) have increasing CDW amplitude and
increasing energy. Each of these states has the largest
CDW amplitude of al states at or below its energy.

We plot the charge order of selected states in Fig. 2.
The CDW sates, (b) through (f), are degenerate, so
taking a different linear combination of the eigenstates
will change ¢ in (2), moving the CDW. In particular,
in state (b) the maximum charge order occurs on a site,
while in states (c) and (f), the maximum charge order
occurs between two sites, or on a bond. All of the
states have degenerate site- and bond-centered CDWSs
with different linear combinations [18].

States (b) and (c) have diagonal stripes with two
different hole densities along the stripe. State (b) has
hole density p, = 1/2 per (1,1) step, while state (c) has
p. = 1. These states are similar to experimenta results
on the nickelates [17] and to the mean-field calculations
of Zaanen and Littlewood [21].

States (€) and (f) exhibit vertical stripes with 1/2
hole per (0,1) step consistent with experimental results
on Lay¢—,Ndy4Sr,CuO, [17] and with the calculations
of WS [18]. States (€) and (f) have the largest CDW
amplitudes that we found.
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FIG. 1. Amplitude of the CDW in every state with energy per
site £ < —0.634. The six labeled states correspond to states
examined in detail later in the paper. The low-energy states
have no CDWs.
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FIG. 2. Hole structures of four of the eigenstates we chose
to examine in detail. The radius of each circle is proportional
to the hole density on the given site. Additionally, the circles
are shaded according to the relative hole density in each state:
Black circles show the maximal hole density in that state
while white circles show the minimum. State (a), which has
the minimum energy, has uniform hole density. States (b)
through () have increasing energy and show increasing CDW
amplitude. Not shown are (d), which has a dlightly diagonal
stripe, and (€) which is nearly identical to (/). In al states the
average spin moment on each site is zero.

Interestingly, the CDWs of the vertical stripe states are
remarkably similar to the density profile obtained from
the ground state of a 4 X 4 cluster with open boundary
conditions in the & direction and periodic boundary
conditions in the the § direction, the boundary conditions
used by WS[18,19]. The hole density as afunction of the
x coordinate for these three statesis shown in Fig. 3. The
states (€) and (/) are excited states of the periodic cluster
No. 2in Tablel. The4 X 4 cluster with open boundary
conditions in the & direction can be generated from the
periodic cluster No. 2 by cutting all bonds aong one
column. In a noninteracting picture, the wave function
of the holes (or electrons) vanishes at the open boundary.
Since the holes are fermions, additional holes will go into
higher energy states with more nodes. In this way, it
becomes apparent that with open boundary conditions,
one will always see density waves. Clearly, the excited
states (e) and (f) essentidly have an extra node along
one column, resulting in a density nearly identical to the
ground state of the cluster with open boundary conditions.

None of the eigenstates has a spontaneous spin density
wave amplitude, but the spin correlations are affected by
the CDW. One way to show the spin correlations is to
apply small magnetic fields along the boundary of the
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FIG. 3. Comparison of the hole density 4(x) as a function of
x coordinate for a4 X 4 cluster with open boundary conditions
in the & direction and states (€) and (). All three systems
exhibit astripein the § direction. The state with open boundary
conditions is the nondegenerate ground state.

simulation cell, as done by WS[18,19]. Thisisshown for
the diagonal and vertical stripe states (b) and (f) in Fig. 4.
The stripes are pinned so the sites with the fields have
maximum electron density with the appropriate average
polarization. In both the diagonal and vertical cases, the
antiferromagnetic order in neighboring stripesis shifted by
r, asin the nickelates and cuprates [17,18].

A more accurate way to show the spin correla
tions is through the pair correlation functions of the
eigenstates without pinning fields. Figure 5 shows
the hole-hole, H(r) = >, (hphy4y), and spin-spin,
S(r) = >,/ (SHSE ), correlation functions where r is 1
or 2 lattice spacings in the & or $ directions (longer dis-
tances wrap around the periodic clusters). The averages
include both the hole-rich and electron-rich regions of
the striped states. In the striped states, holes are more
likely to align vertically than horizontally, especialy two
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FIG. 4. Hole and spin structures of states (b) and (f)
generated by applying a small staggered magnetic field of
h = 0.1 to sites at the boundary of the simulation cell to pin
the spins. The radius of each circle is proportiona to the
hole density on the given site, and the length of the arrows
is proportional to (Si). These are not eigenstates of the t-J
Hamiltonian without the pinning fields, but the spin correlations
pictured are similar to the correlations in the eigenstates (b)
and (f).
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FIG. 5. Hole-hole and spin-spin correlation functions of states
(@), (&), and (f) inthe £ and $ directions.

steps verticaly. Similarly the antiferromagnetic spin
correlations are stronger vertically than horizontally in the
stripes.

To conclude, we found stripes in the t-J model at a
doping of x = % but only as excited states in periodic
systems. The ground state of the model for J /¢ = 0.35
is uniform. The energy cost per site to form diagonal
stripes similar to those found in the nickelates is at least
A, = 0.016¢, and for vertical stripes similar to those in
the cuprates the energy cost is A, = 0.025¢. At this
doping and interaction strength studies on larger systems
have found that the model is nearly phase separated [6,7].
The stripes seen experimentally could be the result of
phase separation frustrated by the Coulomb repulsion [13]
and/or the coupling of the electrons to lattice distortions.
However, the stripe states are not ground states of the
simple t-J model, as claimed in Ref. [18]; this discrepancy
may be due to the open boundary conditions used in that
work.

Our findings are in agreement with the recent work
of Pryadko, Kivelson, and Hone [22] who studied the
interaction between localized holes in a weakly doped
gquantum antiferromagnet. They find that stripes are
unstable due to an attractive interaction between such
domain walls.
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