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Stripes and the t-J Model
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We investigate the two-dimensionalt-J model at a hole doping ofx � 1
8 . The low-energy states are

uniform (not striped). We find numerous excited states with charge density wave structures, which m
be interpreted as striped phases. Some of these are consistent with neutron scattering data on cup
and nickelates. Without additional terms in thet-J Hamiltonian, stripes can be stabilized only as ground
states through the application of artificial boundary conditions.
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In the search for an understanding of the cuprate sup
conductors it is desirable to find a model which captur
many of the essential aspects of the environment exp
enced by the electrons in these materials. Because th
materials are born out of antiferromagnetic insulators
doping, it is somewhat urgent to decide if a simple mod
which begins from the strong electron correlation lim
such as the so-calledt-J model, can explain some feature
which result from the electronic degrees of freedom in t
cuprates [1]. Even though the progress made in trying
solve thet-J model may be characterized as slow, it give
some features which are present in these materials.
example, some important aspects of the calculated sin
hole spectrum [2] are in agreement with the results of t
photoemission data [3]. In addition, the model gives rise
a two-hole bound state [4] with thedx22y2 symmetry which
is the believed symmetry of the superconducting state
these materials.

Emery and Kivelson [5] suggested that the cuprates
near an electronic phase separation instability which is p
vented by the long-range part of the Coulomb interactio
In the phase-separated state, the holes cluster toge
leaving the rest of the system in an antiferromagnet st
with no holes. Phase separation in thet-J model has been
studied by a number of techniques which seem to be g
ing conflicting conclusions [6–11]. For example, Hellbe
and Manousakis [6] using a stochastic projection meth
an extension of the Green’s function Monte Carlo (GFMC
for lattice fermions, find that thet-J model has a region of
phase separation at all interaction strengths. Other te
niques fail to reach this conclusion. Exact diagonalizati
studies of small systems have been used to support [7]
reject [8] phase separation, while high temperature se
expansions [9] show no phase separation in the phys
region of the cuprates. In a recent calculation Caland
et al. [11], using the GFMC approach within the fixe
node approximation, find that the phase boundary for ph
separation is far from that determined by the high tempe
ture series expansions [9] and much closer to that obtai
with unconstrained GFMC [6] except in the delicate regio
with small hole dopings andJ�t & 0.4. By using a uni-
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form Fermi-liquid-type nodal structure, one disregards t
possibility of a nonuniform ground state in which one com
ponent of the mixture (the antiferromagnetic phase) has
fermion degrees of freedom. In addition, in the delicate r
gion of smallJ�t and low doping, spin-back-flow effects
become very important resulting in the interesting stru
ture of the hole “polaron” [12]. These effects are know
to change the nodal structure of the wave function in a c
cial way in strongly correlated quantum fluids. Therefo
fixed-node GFMC may be inadequate in this region.

The phase separation in thet-J model cannot be
realized in the physical system due to the Coulom
interaction [5,6,13]. Instead, such a tendency for pha
separation can be satisfied locally by forming stripes
other charge density wave (CDW) structures with litt
Coulomb cost [14]. The coupling to lattice distortion
may also encourage the formation of stripes [15].

Experimentally, stripe modulations were first observ
in a doped nickelate analog of the cuprates [16]. La2NiO4
may be doped with holes by adding oxygen or b
substituting strontium for lanthanum. The modulatio
seen with neutron scattering in the doped compounds
consistent with the holes formingdiagonal domain walls
separating antiferromagnetic regions of spins. Strip
with a variety of widths and hole densities along th
stripes have been observed.

There is strong evidence for stripe modulations
the cuprates as well [17]. In La1.62xNd0.4SrxCuO4,
superconductivity is suppressed at a filling ofx �

1
8 , and

neutron scattering studies revealvertical domain walls of
holes and spins. In these stripes, a hole density ofrh �
1�2 per lattice spacing is observed. These experime
have prompted renewed theoretical work on models
the cuprates at hole dopingx �

1
8 .

Recently White and Scalapino (WS) found static ve
tical stripe order similar to that of the cuprates in th
two-dimensionalt-J model at hole dopingx �

1
8 using

a density matrix renormalization group technique [18,19
These results are surprising due to the fact that thet-J
model ignores the long-range part of the Coulomb i
teraction and couples to no lattice distortions. One se
© 1999 The American Physical Society
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no physical reason for such a simplified model to have a
ground state with a periodic array of interfaces.

In this paper we show that the t-J model at x �
1
8 has

a striped ground state on sufficiently small finite systems
with appropriate boundary conditions, such as those used
by WS. However, with more physical periodic boundary
conditions, the same finite systems have lower energy
states that are uniform (not striped). The striped states are
present in the periodic systems, but only as excited states.

The t-J Hamiltonian is written in the subspace with no
doubly occupied sites as

H � 2t
X

�ij�s
�cy

iscjs 1 H.c.� 1 J
X
�ij�

µ
Si ? Sj 2

ninj

4

∂
.

(1)

Here �ij� enumerates neighboring sites on a square lattice,
c
y
is creates an electron of spin s on site i, ni �P
s c

y
iscis , and Si is the spin- 1

2 operator. Throughout
this paper, we take t � 1 and J � 0.35.

To achieve a hole doping of x � 1
8 , all calculations were

carried out on periodic 16-site clusters with two holes.
Periodic clusters may be characterized by their primitive
translation vectors a1 and a2. There are a large number
of possible 16-site clusters on the two-dimensional square
lattice. Each cluster can support only striped phases that
are commensurate with the periodicity of that particular
cluster [20]. Clusters which have one particularly short
translation vector are quasi-one-dimensional and behave
like chains or ladders. We consider only clusters in which
both translation vectors have a Manhattan length of at
least lM � jaxj 1 jayj $ 4. There are seven such clus-
ters, shown in Table I. These clusters represent all possible
quasi-two-dimensional 16-site clusters. Later in the paper,
we examine six eigenstates in detail. We label these states
by letters, (a) through �f �, shown next to their correspond-
ing clusters in Table I.

We studied all eigenstates with energy per site E ,

20.634 for each of the seven periodic clusters using exact
diagonalization. For each cluster, we use all possible
combinations of phases u � 0, p along each translation
vector. Several of these states are stripes or CDWs, and
these are necessarily degenerate states. The density in a
CDW state is characterized by an amplitude A, a wave

TABLE I. Translation vectors of the seven possible quasi-
two-dimensional 16-site clusters. The letters label eigenstates
examined later in the paper.

No. a1 a2 States

1 �0, 4� �4, 0�
2 �0, 4� �4, 1� (e),�f �
3 �0, 4� �4, 2�
4 �3, 2� �2, 24�
5 �3, 1� �1, 25� (d )
6 �2, 2� �4, 24� (a),(b)
7 �2, 2� �3, 25� (c)
vector k, and an arbitrary phase f. Thus the hole density
hr � 1 2 nr on site r is given by

hr � h̄ 1 A cos�k ? r 1 f� , (2)

where the average density is h̄ �
1
8 . The phase f de-

pends on the particular linear combination of degenerate
states taken. A different (real) linear combination will
change f, moving the stripe, but A is invariant.

The amplitudes A of the CDW in every low-energy state
are plotted in Fig. 1 as a function of energy per site. The
lowest energy states are uniform and have CDW amplitude
A � 0. For energies above E * 20.645 some CDW
states are stabilized. The maximum CDW amplitude of
these states increases with increasing energy.

We examine in detail the six labeled states in Fig. 1.
State (a) is the lowest energy state and is uniform. States
(b) through �f � have increasing CDW amplitude and
increasing energy. Each of these states has the largest
CDW amplitude of all states at or below its energy.

We plot the charge order of selected states in Fig. 2.
The CDW states, (b) through �f �, are degenerate, so
taking a different linear combination of the eigenstates
will change f in (2), moving the CDW. In particular,
in state (b) the maximum charge order occurs on a site,
while in states (c) and �f �, the maximum charge order
occurs between two sites, or on a bond. All of the
states have degenerate site- and bond-centered CDWs
with different linear combinations [18].

States (b) and (c) have diagonal stripes with two
different hole densities along the stripe. State (b) has
hole density rb � 1�2 per (1,1) step, while state (c) has
rc � 1. These states are similar to experimental results
on the nickelates [17] and to the mean-field calculations
of Zaanen and Littlewood [21].

States (e) and �f � exhibit vertical stripes with 1�2
hole per (0,1) step consistent with experimental results
on La1.62xNd0.4SrxCuO4 [17] and with the calculations
of WS [18]. States (e) and �f � have the largest CDW
amplitudes that we found.
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FIG. 1. Amplitude of the CDW in every state with energy per
site E , 20.634. The six labeled states correspond to states
examined in detail later in the paper. The low-energy states
have no CDWs.
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FIG. 2. Hole structures of four of the eigenstates we chose
to examine in detail. The radius of each circle is proportional
to the hole density on the given site. Additionally, the circles
are shaded according to the relative hole density in each state:
Black circles show the maximal hole density in that state
while white circles show the minimum. State (a), which has
the minimum energy, has uniform hole density. States (b)
through �f � have increasing energy and show increasing CDW
amplitude. Not shown are (d ), which has a slightly diagonal
stripe, and (e) which is nearly identical to �f �. In all states the
average spin moment on each site is zero.

Interestingly, the CDWs of the vertical stripe states are
remarkably similar to the density profile obtained from
the ground state of a 4 3 4 cluster with open boundary
conditions in the x̂ direction and periodic boundary
conditions in the the ŷ direction, the boundary conditions
used by WS [18,19]. The hole density as a function of the
x coordinate for these three states is shown in Fig. 3. The
states (e) and �f � are excited states of the periodic cluster
No. 2 in Table I. The 4 3 4 cluster with open boundary
conditions in the x̂ direction can be generated from the
periodic cluster No. 2 by cutting all bonds along one
column. In a noninteracting picture, the wave function
of the holes (or electrons) vanishes at the open boundary.
Since the holes are fermions, additional holes will go into
higher energy states with more nodes. In this way, it
becomes apparent that with open boundary conditions,
one will always see density waves. Clearly, the excited
states (e) and �f � essentially have an extra node along
one column, resulting in a density nearly identical to the
ground state of the cluster with open boundary conditions.

None of the eigenstates has a spontaneous spin density
wave amplitude, but the spin correlations are affected by
the CDW. One way to show the spin correlations is to
apply small magnetic fields along the boundary of the
134
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FIG. 3. Comparison of the hole density h�x� as a function of
x coordinate for a 4 3 4 cluster with open boundary conditions
in the x̂ direction and states (e) and �f �. All three systems
exhibit a stripe in the ŷ direction. The state with open boundary
conditions is the nondegenerate ground state.

simulation cell, as done by WS [18,19]. This is shown for
the diagonal and vertical stripe states (b) and �f � in Fig. 4.
The stripes are pinned so the sites with the fields have
maximum electron density with the appropriate average
polarization. In both the diagonal and vertical cases, the
antiferromagnetic order in neighboring stripes is shifted by
p, as in the nickelates and cuprates [17,18].

A more accurate way to show the spin correla-
tions is through the pair correlation functions of the
eigenstates without pinning fields. Figure 5 shows
the hole-hole, H�r� �

P
r0 �hr0hr01r�, and spin-spin,

S�r� �
P

r0 �Sz
r0Sz

r01r�, correlation functions where r is 1
or 2 lattice spacings in the x̂ or ŷ directions (longer dis-
tances wrap around the periodic clusters). The averages
include both the hole-rich and electron-rich regions of
the striped states. In the striped states, holes are more
likely to align vertically than horizontally, especially two

FIG. 4. Hole and spin structures of states (b) and �f �
generated by applying a small staggered magnetic field of
h � 0.1 to sites at the boundary of the simulation cell to pin
the spins. The radius of each circle is proportional to the
hole density on the given site, and the length of the arrows
is proportional to �Sz

i �. These are not eigenstates of the t-J
Hamiltonian without the pinning fields, but the spin correlations
pictured are similar to the correlations in the eigenstates (b)
and �f �.
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FIG. 5. Hole-hole and spin-spin correlation functions of states
(a), (e), and �f � in the x̂ and ŷ directions.

steps vertically. Similarly the antiferromagnetic spin
correlations are stronger vertically than horizontally in the
stripes.

To conclude, we found stripes in the t-J model at a
doping of x �

1
8 , but only as excited states in periodic

systems. The ground state of the model for J�t � 0.35
is uniform. The energy cost per site to form diagonal
stripes similar to those found in the nickelates is at least
Dd * 0.016t, and for vertical stripes similar to those in
the cuprates the energy cost is Dy * 0.025t. At this
doping and interaction strength studies on larger systems
have found that the model is nearly phase separated [6,7].
The stripes seen experimentally could be the result of
phase separation frustrated by the Coulomb repulsion [13]
and/or the coupling of the electrons to lattice distortions.
However, the stripe states are not ground states of the
simple t-J model, as claimed in Ref. [18]; this discrepancy
may be due to the open boundary conditions used in that
work.

Our findings are in agreement with the recent work
of Pryadko, Kivelson, and Hone [22] who studied the
interaction between localized holes in a weakly doped
quantum antiferromagnet. They find that stripes are
unstable due to an attractive interaction between such
domain walls.
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