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Kramers-Like Turnover in Activationless Rate Processes
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The activationless escape of a free Brownian particle from a unit interval is analyzed over the
entire range of friction coefficientg. Approximate analytic expressions that compare favorably with
simulations are derived for the effective and asymptotic rate constantsk andG that describe the escape
kinetics. Both rate constants show a turnover behavior as functions ofg, qualitatively similar to the
rate constant in the Kramers theory of activated rate processes. It is found thatk � 1� ln�1�g� and
G � g1�3 asg ! 0 while both rate constants vanish asg21 asg ! `.
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In the Kramers description of activated rate process
the rate of escape of a Brownian particle from a potent
well over a high barrier has a turnover as a function
the friction coefficient [1,2]. In this paper we show tha
turnover can also occur for activationless rate process
albeit for different physical reasons. There is a fundame
tal distinction between these two processes. The kinet
of activated escape is exponential in time for any value
the friction, while for activationless processes the kine
ics is generally nonexponential. Therefore, we will us
two rate constants to characterize the activationless
cape. One of these, the asymptotic rate constant, deno
by G, describes the long time decay of the survival prob
bility. The second, the effective rate constant, denoted
k, is defined as the inverse of the mean lifetime of the pa
ticle. In activated rate processes the two rate constants
equal. In what follows we study the dependence ofk and
G on the friction coefficientg for the activationless es-
cape of a free Brownian particle in one dimension from
unit interval. It is found that when the friction coefficien
approaches infinity both rate constants go to zero asg21

just like the rate constant in the Kramers theory. How
ever, wheng ! 0 the rate constantsk and G approach
zero in different ways. In contrast to the Kramers ra
constant which tends to zero asg, we find thatG goes to
zero asg1�3, while k approaches zero as1� ln�1�g�. An
immediate consequence of our theory is that the stea
state rate constant of the trapping problem in one dime
sion also exhibits a turnover behavior.

We consider the escape of a Brownian particle from t
unit interval�0, 1�. The particle motion is assumed to b
governed by the Langevin equation. Then the joint de
sity in phase space,p�x, y, t�, satisfies the Klein-Kramers
equation, which, in dimensionless variables�m � kBT �
1�, is
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whereg is the dimensionless friction coefficient. Equa
tion (1) is supplemented by the initial conditions that th
particle position is uniformly distributed over the interva
0 # x # 1 and that the density of velocity is Maxwellian,
so that p�x, y, 0� � feq�y� � �2p�21�2 exp�2y2�2�.
The boundary conditions that guarantee that a
escaping particle never returns to the interval a
p�0, y, t� jy.0 � p�1, y, t� jy,0 � 0. It is worthwhile
to note that the problem we are dealing with is close
related to the one of the survival of a particle moving i
phase space in the presence of a trap, first posed by W
and Uhlenbeck [3]. This problem is trivial for a diffusing
particle but is extremely complicated in phase space.
discussion of the source of this complexity and a list o
key references is to be found in Refs. [4,5].

The solution to Eq. (1) allows one to calculate th
survival probabilityS�t� of the particle on the interval,

S�t� �
Z 1

0
dx

Z `

2`
p�x, y, t� dy . (2)

The two rate constants characterizing the escape kine
are the effective rate constantk � 1��t�, where the mean
lifetime �t� of the particle is given by

�t� �
1
k

�
Z `

0
S�t� dt , (3)

and the asymptotic rate constantG determined fromS�t�
by

G � 2 lim
t!`

d
dt

ln�S�t�� . (4)

The latter is the least (in magnitude) eigenvalue of th
Klein-Kramers operator on the right-hand side of Eq. (1
with appropriate boundary conditions. When the surviv
probability is a single exponential,k coincides withG;
more generally it does not.

Since a solution forp�x, y, t� is unknown we first
derive approximate expressions fork�g� and G�g� for
© 1999 The American Physical Society 1279



VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999
both the large and small g regimes. In the large g

regime our analysis is based on the ordinary diffusion
equation along the position x with radiation boundary
conditions. In the small g regime the two rate constants
are determined by solving the diffusion equation in
velocity space in the presence of a sink term. Finally,
an heuristic interpolation formula, originally suggested in
Ref. [6], is used to obtain expressions for the two rate
constants that cover the entire range in g.

High friction regime.—When g ! `, the problem
reduces approximately to diffusion on a line with radiation
boundary conditions imposed at its end points. That is,
the reduced density, q�x, t� �

R`
2` p�x, y, t� dy, satisfies

≠q
≠t

� D
≠2q
≠x2 ; D �

1
g

, (5)

which is to be solved subject to the boundary conditions

D
≠q�x, t�

≠x

Ç
x�0

� kq�0, t� and 2 D
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≠x

Ç
x�1

� kq�1, t� , (6)

where

k � �jyj� �
Z `

2`
jyjfeq�y� dy � �2�p�1�2. (7)

This problem can be solved using standard techniques
which lead to the following expression for khigh (where
the subscript indicates the high friction regime),

1
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When g ! ` so that D ! 0, the effective rate constant is
given by the inverse mean first-passage (FP) time to x �
0 or 1 and khigh 	 kFP � 12D � 12�g. In the opposite
limit, g ! 0, since the diffusion constant approaches
infinity, the particles remain uniformly distributed in the
interval and the escape rate is given by perturbation theory
(PT) as khigh 	 kPT � 2k.

The asymptotic rate constant Ghigh can also be found
using standard techniques. The eigenvalue problem that
determines Ghigh reduces to solving the transcendental
equation

�DGhigh�1�2 tan

∑µ
Ghigh

4D

∂1�2∏
� k . (9)

When D ! ` (g ! 0), we have Ghigh 	 GPT � 2k �
kPT as it should be since in this case the escape kinetics
is single-exponential. When D ! 0 (g ! `) the asymp-
totic rate constant goes to zero as Ghigh 	 G` � p2D �
1280
p2�g. In order to bridge the gap between these two
regimes we use an interpolation formula of the form [sug-
gested by the exact expression in Eq. (8)]
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This has been compared with the numerical solution of
Eq. (9) and has been found to fit the data to within a
relative error of 2% or less. Thus, we have shown that
in the high friction regime both khigh and Ghigh decrease
monotonically with the friction coefficient and approach
zero as g21. They have the same maximum value at
g � 0 given by 2k.

Low friction regime.—To analyze the escape in the low
friction regime (g ! 0) we consider the velocity density,
f�y, t� �

R1
0 p�x, y, t� dx, which approximately satisfies

the equation
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where the sink term K�y� is chosen so as to match the
exact mean lifetime in the unit interval at g � 0. For
g � 0, the survival probability of a particle with initial
velocity y, found from Eq. (11), is e2K�y�t , and the life-
time of the particle is therefore 1�K�y�. For the ballis-
tic dynamics [i.e., g � 0 in Eq. (1)], this lifetime can
be found exactly as follows: If a particle is initially at
x, the time to reach the boundary is �1 2 x��y when
y is positive and x�jyj when y is negative. Averag-
ing this time with respect to the uniform distribution of
x results in the mean lifetime given by 1��2jyj�. Thus,
matching these lifetimes leads to K�y� � 2jyj. Aver-
aging the survival probability e2K�y�t � e22jyjt with re-
spect to the Maxwell distribution of initial velocity gives
Sapprox�t� �

R
`
2` e22jyjtfeq�y� dy � e2t2

erfc�
p

2 t�. On
the other hand, the exact survival probability S�t� calcu-
lated from Eq. (1) with g � 0 is S�t� � erf �1��

p
2 t�� 2p

2t2�p �1 2 e21��2t2��. These survival probabilities have
identical asymptotic behavior and, in fact, essentially co-
incide except at short times.

We now use Eq. (11) to analyze how the mean lifetime,
and hence k, depends on g in the low friction regime. To
find the behavior of klow when g ! 0, we first determine
the mean lifetime �t�y�� of a particle with initial velocity
y by solving the equation

g

∑
d2�t�y��

dy2 2 y
d�t�y��

dy

∏
2 2jyj�t�y�� � 21 . (12)

Using the singular perturbation theory we find
�t�y�� 

Ω

1��4g�1�3 1 ��g�2�2�3 2 y2���2g�; 0 # jyj # �g�2�1�3,
1��2jyj�; �g�2�1�3 # jyj , ` .

(13)
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Averaging �t�y�� in Eq. (13) with respect to feq�y�, we
find that the limiting behavior of klow �g� when g ! 0 is
given by

klow �g� 	 3
p

2p

∑
ln

µ
1
g

∂∏21

�
3p

2

∑
ln

µ
1
g

∂∏21

kPT .

(14)

It is worth emphasizing that this result is exact and can be
derived directly from Eq. (1) together with the initial and
boundary conditions indicated in the text below Eq. (1).
In the opposite limiting case when g ! `, rapid diffusion
along the velocity coordinate permanently maintains the
Maxwell distribution of velocities and the sink can be
regarded as a small perturbation. From this it follows
that the survival probability decays exponentially with
the rate constant given by perturbation theory, klow 	
kPT � �K�y�� � 2k. Surprisingly, this rate constant is
exactly the same as that found in the high friction regime
when g ! 0. The following heuristic formula accurately
interpolates the dependence of klow on g between kPT
when g ! ` and that given in Eq. (14) when g ! 0:

klow �g� � kPT

Ω
1 1

2
3p

ln

∑
1 1

A
g

∏æ21

, (15)

in which A � 1.45 is a constant determined by fitting
exact results [obtained by solving Eq. (12) numerically]
with Eq. (15).

We next turn to finding an approximate solution for
the least eigenvalue of the operator on the right-hand
side of Eq. (11) with K�y� � 2jyj, i.e., calculating the
asymptotic rate constant Glow . Let w�y� be the eigenfunc-
tion associated with the eigenvalue l. By representing
the eigenfunction as w�y� � e2y2�4c�y�, the eigenvalue
problem takes the Schrödinger-like form

2
d2c

dy2 1

∑
y2
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1
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1

1
2

∂
c � Ec .

(16)

When g ! `, a solution for the least eigenvalue can be
found by perturbation theory, leading to Glow 	 GPT �
2�jyj� � 2k which is equal to kPT . One can attempt to
find an approximate solution for Glow �g� valid for the
entire range of g by applying the WKB method. The
equation for E, which can be regarded as a ground state
energy, is

Z ymax�E�

0

s
E 2

y2

4
2

2y

g
dy �

p

4
, (17)

where ymax�E� is the positive root of the quadratic
equation y2�4 1 2y�g 2 E � 0. The integration can be
carried out exactly leading to the transcendental equation
for E, µ
1

g2 1
E
4

∂
3
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1 2

2
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1 1

g2E
4

∂21�2∏æ
2
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�

1
8

. (18)

The WKB solution for the asymptotic rate constant is
therefore GWKB � g�E 2 1�2�, where E is the root of
Eq. (18). It is known that the WKB method does not lead
to a very good approximation for the ground state energy.
In the present case the use of the WKB formalism gives
GWKB � 4

p
2�p when g ! ` rather than the correct

value �8�p�1�2. Nevertheless, GWKB�g� does appear to
have the right functional dependence on g as compared
with a numerical solution of the eigenvalue problem in
Eq. (16). If GWKB is multiplied by a factor

p
p�2 to

guarantee the correct value of Glow in the large-g limit,
one arrives at an expression

Glow �g� �

p
p

2
GWKB�g� , (19)

which deviates from the numerically obtained results by
no more than 3% over the entire range of g. The
value of Glow �g� as calculated from Eq. (19) increases
monotonically with g from zero to GPT . At small g, Glow
is approximated as Glow �g� 	 32�3�p�4�7�6g1�3.

Bridging à la Visscher-Mel’nikov-Meshkov.—Now that
we know expressions for klow and khigh, Glow and Ghigh,
as functions of g, we complete this analysis by providing
approximate analytic expressions for k and G that cover
the entire range of g. First of all, we note that kPT �
GPT is an upper limit for klow �g� and Glow �g� when
g ! ` and for khigh�g� and Ghigh�g� when g ! 0. This

FIG. 1. Reduced effective rate constant k�g��kPT as a func-
tion of the friction g. The data (closed circles) are obtained
from Langevin dynamics simulations, the dash-dotted line cor-
responds to khigh�g� given in Eq. (8), the long-dashed line to
klow �g� given in Eq. (15), and the solid line represents the
Visscher-Mel’nikov-Meshkov interpolation in Eq. (20). The
dotted line corresponds to kFP �g��kPT .
1281
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suggests making use of the Visscher-Mel’nikov-Meshkov
interpolation formula [2,6] to cover the entire range of g.
For the effective rate constant, this leads to

k�g�
kPT

�
klow �g�khigh�g�

k2
PT

�

Ω∑
1 1

2
3p

ln

µ
1 1

A
g
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1 1

g
p

18p

∏æ21

.

(20)

As shown in Fig. 1, this compares favorably with results
of Langevin dynamics simulations. The function k�g�
in Eq. (20) has a turnover qualitatively similar to that
in the Kramers theory of activated rate processes. Both
the present theory for activationless escape and the theory
of activated rate processes predict that the rate constants
go to zero as 1�g in the limit g ! `. In the small-g
limit, however, k�g� goes to zero as 1� ln�1�g� while the
Kramers rate constant is proportional to g.

Similarly, we find for the asymptotic rate constant

G�g�
GPT

�
Ghigh�g�Glow�g�

G
2
PT

�

∑
1 1

µ
2
p

∂3�2 g

p

∏21pp

2
GWKB�g� . (21)

Figure 2 compares the results of simulations to those pro-
duced by this formula, indicating a good fit to the numeri-
cal results. Figure 2 also shows a turnover behavior of the
asymptotic rate constant as g is varied. When g ! ` the
asymptotic rate constant goes to zero as 1�g like k and
the Kramers rate constant, whereas it decreases as g1�3

for g ! 0.
In conclusion, we have derived approximate analytic

expressions for the effective and asymptotic rate constants
describing the escape of a Brownian particle from a unit
interval. These rate constants are given in Eqs. (20) and
(21), respectively. In the high friction limit, all three
(i.e., the Kramers rate constant, k, and G) go to zero as
1�g simply because the diffusion coefficient vanishes as
1�g. If the particle does not move, it cannot escape.
In the low friction limit, the physics of activated and
activationless escape is different. For activated escape,
the rate constant goes to zero as g ! 0 because the
particle does not have sufficient energy to surmount the
barrier. For activationless processes, even in the inertial
limit, the particle will always escape and hence the
1282
FIG. 2. Reduced asymptotic rate constant G�g��GPT as a
function of the friction g. The data (closed circles) are
obtained from Langevin dynamics simulations, the dash-dotted
line corresponds to Ghigh�g� given in Eq. (10), the long-dashed
line to Glow �g� given in Eq. (19), and the solid line represents
the Visscher-Mel’nikov-Meshkov approximation in Eq. (21).
The dotted line corresponds to G`�g��GPT .

survival probability tends to zero at long times. However,
if it tends to zero sufficiently slowly, then the mean
lifetime diverges (i.e., the effective rate constant becomes
zero). Since the rate goes to zero in both limits, it must
exhibit a turnover behavior as a function of the friction
coefficient.
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