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Exact Solution of Double d Function Bose Gas through an Interacting Anyon Gas
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A 1D Bose gas interacting through d, d0 and double d function potentials is shown to be equivalent
to a d anyon gas, allowing an exact Bethe ansatz solution. In the noninteracting limit, it describes an
ideal gas with generalized exclusion statistics and solves some recent controversies.

PACS numbers: 05.30.Jp, 03.70.+k, 11.55.Ds, 71.10.Pm
The concept of particles with generalized exclusion
statistics (GES) introduced by Haldane [1] has important
consequences [2] in describing 1D non-Fermi liquids [3],
which in turn is believed to be related [4] to the edge
excitations in fractional quantum Hall effect [5]. On the
other hand, inspired by the success of the Chern-Simon
theory, an attempt was made recently [6] to describe a
1D ideal gas with GES in the framework of a gauge field
model. However, in a subsequent paper [7] the previous
result was shown to be wrong and another conclusion was
offered. Our aim here is to deal primarily with a 1D
Bose gas interacting through double d function potentials
together with the well-known d and derivative d-function
interactions. We show that this interacting model with
several singular potentials is equivalent to a 1D gas with
GES (which we call anyon for brevity) interacting via
d-function potential only. This d-anyon gas is found
to be exactly solvable by the coordinate Bethe ansatz
(CBA) just as its bosonic counterpart, contradicting the
common belief [8] that the CBA is applicable only to
models with symmetric or antisymmetric wave functions.
Remarkably, at the limit of vanishing interaction, the
anyon gas becomes free and gauge equivalent to a related
model proposed in [6]. This shows that, though the
explicit wave function and the N-body Hamiltonian of
[6] are not exact, the conclusion it arrived at is basically
correct. Therefore, while the error in the treatment of
[6] was detected in [7], the source of this error and the
possible way to rectify it becomes evident from our result.

We start with a 1D Bose gas interacting through
generalized d-function potentials as
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This model was briefly considered and readily discarded
in [9] as too difficult a problem to solve. Notice,
however, that for ga � 0, a � 1, 2, i.e., without the
double d potentials, it has various exactly solvable limits.
For example, for k � 0, c fi 0 the model becomes the
well-known d-Bose gas [10], while for k fi 0, c � 0
it corresponds to Bose gas with d0 interaction [11].
Both of these cases are not only exactly solvable by
CBA, but also represent quantum integrable systems
allowing R-matrix solution. This can be proved through
their connection with the quantum integrable nonlinear
Schrödinger equation (NLSE) [12] and derivative NLSE
[13], respectively. Even the mixed case with k fi 0, c fi

0 is solvable through CBA [8,11], though as a quantum
model it does not allow a R-matrix solution. Nevertheless
for ga fi 0, i.e., with the inclusion of highly singular
double d function interactions, the solvability of the
model is completely lost, and the application of the CBA
becomes problematic due to the presence of three-body
interacting terms. We ask therefore whether, for some
choice of the coupling constants ga other than zero,
this difficulty could still be avoided and the solvability
of the model be restored. We find the answer to be
© 1999 The American Physical Society 1275
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affirmative and, in particular, for ga � k2 the model
becomes equivalent to a d-function anyon gas, which
appears to be exactly solvable similar to the well-known
bosonic case obtained at ga � k � 0.

Instead of attacking model (1) directly, our strategy
would be to transform it into some equivalent tractable
problem. For this we notice that, parallel to the rela-
tion between the d-Bose gas and the NLS model [14],
the generalized interacting bosonic model (1) can be con-
sidered to be the N-particle Hamiltonian of the nonlinear
field model:

H �
Z

dx �:��cy
x cx 1 cr2 1 ikr�cycx 2 cy

x c��:

1 k2�cyr2c�	, r 
 �cyc� , (2)

involving bosonic operators :�c�x�, cy� y�� � d�x 2 y�.
In (2) we have chosen g1 � g2 � k2 and introduced
notation : : to indicate normal ordering (NO) in bosonic
operators. Restricting now to the jN� particle state and
defining the N-particle wave function as

F�xi1 , xi2 , . . . , xiN � � �0jc�xi1�c�xi2 � · · · c�xiN � jN� , (3)

we can generate all terms of (1) starting from (2). For
example, the last term in (2):

R
dx �cyr2c� is equiva-

lent to two normally ordered terms like
R

dx :�r3 1

r2
R

dy �d�x 2 y��2	: . When the first one acts on the
state jN�, its three c�x� operators in passing through the
creation operators at points xj , xk , xl in jN� would produce
a sum of terms with a product of three d functions
having arguments �x 2 xj�, �x 2 xk�, and �x 2 xl�. On
integration by x, they would generate the double d

function potential d�xj 2 xk�d�xl 2 xk�. Note that this is
a three-body term and would not contribute in two-body
bosonic interactions. On the other hand, the second term,
acting on jN�, would give rise to the sum of terms like
d�xk 2 xl�d�xk 2 xk� � �d�xk 2 xl��2. Similarly, other
terms with d0- and d-function interactions are obtained in
(1) from (2).

Our next step is to define a gauge transformed operator,

c̃�x� � e
2ik

Rx

2`
cy�x0�c�x0� dx0

c�x� , (4)

along with its conjugate c̃y�x�. We may check that the
derivatives and products of the transformed operators are
related to the old ones in the following way:
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where
...

... stands for NO with respect to the transformed
operator (4), which does not necessarily coincide with the
bosonic NO as evident from (6). Using these relations,
therefore, one rewrites Hamiltonian (2) in the form

H̃ �
Z

dx
...�c̃y

x c̃x 1 c�c̃yc̃�2�
... . (7)

Note, however, that, in spite of the same form as NLSE,
(7) is not the same as the known model, since the fields
involved are no longer bosonic operators but exhibit
anyonlike properties

c̃y�x1�c̃y�x2� � eike�x12x2�c̃y�x2�c̃y�x1�,

c̃�x1�c̃y�x2� � e2ike�x12x2�c̃y�x2�c̃�x1� 1 d�x1 2 x2� ,
(8)

etc., where

e�x 2 y� � 61

for x . y, x , y, and � 0 for x � y , (9)

[which may be expressed also through the symmetrical
unit-step function [15]. This means that the bosonic
commutation relation (CR) �c̃�x�, c̃y� y�� � d�x 2 y�
remains valid at the coinciding points. These relations
can be checked easily by using realization (4) through
bosonic fields.

For finding an N-body Hamiltonian corresponding to
(7), we observe that operator c̃�x� in passing through
the string of anyonic creation operators in jÑ� would
pick up first a phase e2ik

P
i,k

e�x2xi� due to (8) and
then leave a d�x 2 xk� at xk due to its standard CR
at the coinciding points. The phase factor, however, is
canceled subsequently when the associated c̃y�x� also
passes through the same creation operators and comes to
the point xk . This happens due to the opposite signs of the
phases as seen from (8). Therefore, finally, similar to the
bosonic model one obtains a d-function interacting gas:

H̃N � 2

NX
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≠2
xk

1 c
X
�k,l�

d�xk 2 xl� . (10)

However, in contrast to the standard case, the wave func-
tion now exhibits a generalized symmetry:
F̃�x1, . . . , xi , . . . , xj , . . . , xN � � e
2ik

hPj

k�i11
e�xi2xk �2

Pj21

k�i11
e�xj2xk �

i
F̃�x1, . . . , xj , . . . , xi , . . . , xN � , (11)
dictated by the operator relations (8), and the model
is defined in an infinite-interval space R. It should be em-
phasized that, due to the validity of bosonic CR at coin-
ciding points in the anyonic relations (8), in the induced
wave function (11) the phase factor with e�xl 2 xk� van-
ishes at xl � xk making it well defined. Note that the
commutation relations (8) and the symmetry of the wave
function (11) for this 1D model are remarkably consistent
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with the genuine anyonic behaviors in 2D [16]. Like the
anyonic property, while c̃y is q21 � eike�x12x2� symmet-
ric, the wave function F̃�x1, x2� is q symmetric, so that
the j2̃�-particle state remains invariant under permutation
of coordinates. It is evident that the range of k is suf-
ficient to be restricted in the interval of 2p by choosing
2p $ k # p and any nonzero value of k affects the
symmetry under reflection of coordinates, close to the 2D
anyon case. Another parallel of multianyon wave function
[16] can be observed in (11); i.e., the phase factor appear-
ing under exchange of two of its arguments also depends
on the intermediate coordinates.

We have converted thus the original eigen-
value problem related to (1) to an equivalent one:
H̃NF̃�x1, . . . , xN � � ENF̃�x1, . . . , xN � for (10) acting
on an anyon-type wave function (11). Since the Bethe
ansatz solution is meant apparently for the (anti)-
symmetric wave functions only [8], the present problem
claims novelty. However, we find that the CBA is
applicable here with equal success, if one modifies the
Bethe ansatz for the wave function appropriately:

F̃�x1, . . . , xN � � FA�x1, . . . , xN �FB�x1, . . . , xN � . (12)

Here, FB is the symmetric function in the standard Bethe
ansatz form [10]:

FB�x1, . . . , xN � �
X
P

A�P�ei
P

j
xjkPj , (13)

defined in the primary region R1: x1 # x2 # · · · # xN ,
while FA is the additional anyonic part given as

FA�x1, . . . , xN � � e2i�k�2�L�x1,...,xN �,

with L 

X
i,j

e�xi 2 xj� ,
(14)

with e�xi 2 xj� as defined in (9). Remarkably, the
discontinuity in the derivative of the wave function (12)
at the boundary,

�≠xl 2 ≠xk �F̃j1 2 �≠xl 2 ≠xk �F̃j2 � cF̃j0 , (15)

with the notation j6 � jxl�x6
k

and j0 � jxl�xk , determines
the scattering amplitude in the same way as in the case of
d-Bose gas. This becomes possible since using (12) and
(14), along with (9), one obtains

F̃�x1, . . . , xN �j1 � e2i�k�2� �211S�FB�x1, . . . , xN �jxl�x1
k

,

F̃�x1, . . . , xN �j2 � e2i�k�2� �111S�FB�x1, . . . , xN �jxl�x2
k

,

F̃�x1, . . . , xN �j0 � e2i�k�2� �S�FB�x1, . . . , xN �jxl�xk ,
(16)

where S � L 2 e�xk 2 xl�. Contributions coming from
the derivatives of other e�xi 2 xj� factors (as d functions)
in (15) clearly cancel each other, transforming it, conse-
quently, to an equation only for the symmetric part of the
wave function in the standard form:

�≠xl 2 ≠xk �FB�x1, . . . , xN �j1 � c̃FB�x1, . . . , xN �j0 ,
(17)

but with modified coupling constant c̃ � c��4 cosk

2 �.
Note that the singularity of the original bosonic problem
is reflected in the discontinuity of the anyonic wave
function (12). Such discontinuity at the boundaries of
different regions, though somewhat unusual in CBA,
has been observed recently in another context [17]. In
the present case, this also does not affect the physical
picture, as evident from the reduction of the problem to
(17) for continuous wave functions. Therefore following
arguments of the bosonic model [10], one can reduce
(17) further to the region R1 involving only adjacent k0s;
i.e., with xl ! xk11 and using the Bethe ansatz (13),
calculate the two-particle scattering amplitude as eiull11 �
�kl 2 kl11 2 i

c̃
2 ���kl 2 kl11 1 i

c̃
2 � � e2iul11l . Notice,

however, that in contrast to [10] the coupling constant
in this anyonic case has been changed. At k � 0 one
recovers the bosonic case, while k � 6p gives hard-
core repulsion c ! `, simulating a fermionic model.
In the present infinite-interval space, the values of �k	
have no restriction. However, if we restrict to the
interval 0 # xj # L, the boundary condition would be
twisted as F̃�x11L, . . . , xN � � eik�N21�F̃�x1, . . . , xN �, and
one would obtain the determining equations for k0s
as kj � 2

1
L

PN
s�1 ũjs 1

2p

L nj 1
k

L �N 1 1 2 2j�, j �
1, . . . , N , with nj an integer. Here we have redefined
ũjs � ujs 2 ke�j 2 s� � 2ũsj to introduce an anyonic
scattering phase, since such a particle in passing through
others would pick up a phase e6ik depending on its
relative position. The energy eigenvalue of the system
EN �

PN
j k2

j , though it has the same form as in the
bosonic model, acquires in effect a different value due
to the changed coupling constant. We may mention here
that the possibility of gauging away certain multispecies
fermionic interaction by introducing a twisting in the
boundary condition has been observed recently [18].
Similar spirit of the present result in a totally different
context might therefore be an indication of a deeper
generality.

Now at c ! 0 limit of (10) we recover the results related
to a GES ideal gas having properties similar to (8) and
(11). As we have shown, this free anyonic Hamiltonian
would be equivalent to the N-bosonic model (1) at c �
0, ga � k2. Establishing such a fact through direct gauge
transformation of the wave function was the aim of [6].
However, this seems to be difficult to achieve, in which
investigations [6,7] were concentrated. We have avoided
this difficulty by showing the equivalence through the
gauge relation between the related field models (7) and (2).
Notice also that the field model [Eq. (8)] of [6] differs from
that [Eq. (6)] of [7] and ours by a crucial term. We note
again that (1) even with c � 0 involves three-body terms,
ignoring which naturally would make it not equivalent
to the free anyonic Hamiltonian. In both [6] and [7],
the authors worked with a two-body bosonic Hamiltonian
which could not give the right equivalence.
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