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Henneberger Replies: Addressing optical properties of a
bounded medium, a way to circumvent, at all, the explic
consideration of surface effects is to match bulk solutio
of Maxwell’s equation (ME) valid for medium and vacuum
separately via Maxwell’s boundary conditions (MBC)
This is justified as long as the optical wavelengthl is
larger than the rangea of surface effects. This “MBC
approach” applies without conceptual problems if spat
dispersion is neglected. In the commented paper (C
[1] I presented a method to generalize this approach
the inclusion of spatial dispersion still without additiona
boundary conditions (ABC) besides MBC.

In two preceding Comments by Nelson and Chen (CN
[2] and by Zeyher (ZC) [3] the authors (A) allege error
in CP and (B) insist on the general validity of Pekar’
ABC in the vicinity of the excitonic resonance. Below
I will show that (A) the alleged errors result merely from
incorrect references to CP and misinterpretation of both
ideas and results, and (B) the reasoning to obtain Peka
ABC is neither general nor convincing.

(A) Let me first repeat the basic ideas of CP follow
ing the notation there: Because of the nonlocality broug
about by spatial dispersion, global solutions of ME (6) o
CP existing in the infinite bulk medium are used. Look
ing for solutions valid in the infinite bulk medium may ap
pear rather drastic; however, only this makes the proced
independent of any claim on the behavior of the boun
ary (e.g., step functions or better). Since Im�qa�v�� fi 0
in an absorbing medium, global solutionse6iqax describ-
ing quasi freely propagating waves as solutions of t
homogeneous ME (6) do not exist on account of the
asymptotic behavior. Therefore one is forced to consid
sourcess�x, v� in a regionjxj , a in order to generate
propagating waves forjxj . a having the correct asymp-
totic behavior. These sources, though well defined, a
reference sources to be put in a medium filling the fu
space (instead of the half space). On the other ha
sinces�x, v� is arbitrary in the beginning Eqs. (6)–(10
of CP, the method is completely general insofar as a
linear combination of solutions of the homogeneous equ
tion Eq. (6) can be obtained forjxj . a choosingsa in
Eq. (10).

This MBC approach is to be contrasted with all thos
approaches which consider explicitly the surface provi
ing, e.g., an expression for the susceptibilityx�x, x0� of the
spatially inhomogeneous system comprising the bound
medium and vacuum. Supposingx�x, x0� given, ME can
be solved without stressing any ABC’s. Both CNC an
ZC use as a starting point the so-called dielectric appro
mation (DA)x0�x, x0� � Q�x�Q�x0�xb�x 2 x0� (compare
Ref. [5] of ZC), wherexb is the bulk susceptibility and
the surface is considered via step functions. Tox0 cor-
rectionsDx�x, x0� are added accounting surface effec
more realistically. The surface response induced byDx,
Ds�x� � q2

0

R
dx0 Dx�x, x0�E�x0� can be used to rewrite

the homogeneous ME (�0 � ≠2

≠x2 1 q2
0)
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�0E�x� 1 q2
0u�x�

Z `

0
dx0 xb�x 2 x0�E�x0� � 2Ds�x� .

(1)
This equation must not be confused with ME (6) of C
being a reference ME for a medium filling the full space
(i) On its left-hand side (lhs) the step functionQ�x� is
missing and the lower limit of integration is2` instead
of 0. (ii) The source terms�x� on its right-hand side
(rhs) appears independent of and different from the surfa
responseDs�x� as an additional inhomogeneity being
localized within a layerjxj , a.

Both Comments identify erroneously Eq. (1) of this Re
ply and Eq. (6) of CP: Nelson and Chen present direc
their result forDs [rhs of Eq. (2) of CNC] and Zeyher
reconstructsDs from his assumption forDx [expression
(3) of ZC]. Both CNC and ZC obtain up to a prefac
tor Ds�x� � eiqexx and conclude from that a contradiction
to the assumptions�x� � s0d�x� made in CP. However,
rewriting Eq. (6) of CP in such a way that its lhs corre
sponds to that of Eq. (1) also yieldsDs�x� � eiqexx for the
Hopfield model (HM) dielectric function Eq. (13) of CP
Thus, there is no contradiction between the spatially e
tended surface response on the one hand and the assu
tion of localized sources made in CP on the other han
and the controversy concerns merely the prefactor in t
surface response describing the reflection of field fluctu
tions at the boundary.

A way to address this problem following Ref. [2] of ZC
in a slightly generalized form is to regard the equation f
the HM excitonic susceptibility�exx�x, x0� � 2D̃d�x 2

x0� as a propagation equation for excitons, where�ex �
≠2�≠x2 1 q2

ex andqex�v� considers electron-phonon self
energy by a finite dampingg. Its solution forx, x0 . 0,
taking reflection atx � 0 into account, is2qexx�x, x0� �
iD̃�eiqexjx2x0j 1 reiqex�x1x0��. It yields for any givenr�v�
the correct polariton dispersion of the bulk and, dependi
on the choice ofr�v�, an ABC �1 1 r�P0�0� 1 iqex�1 2

r�P�0� � 0, sometimes called generalized Pekar’s ABC
Hence, the Pekar ABC is equivalent to puttingr�v� � 21.

Nelson and Chen claim to having derived the Pekar AB
and that this is explicitly stated in their Ref. [2]. Howeve
neither is this statement proved in their Comment nor ma
in their Ref. [2]. There (p. 15 387) they write “we con
clude that the Pekar boundary condition cannot apply
a Frenkel exciton. . . the same conclusion applies approx
mately to Wannier excitons” and summarize “we believ
it is incorrect to use Pekar’s boundary condition macr
scopically.” This, so far, would not contradict but rathe
confirm the result of CP.

ZC states that the approach of CP is incorrect wi
respect to (a) a proper treatment ofx�x, x0� and (b) solving
ME using the obtainedx. The fact is, however, that
(a) CP never addressed a proper treatment ofx�x, x0�
but just, on the contrary, figured out a way to avoid i
consideration at all, providing a solution referring sole
to xb , and (b) Eq. (6) of CP differs from Eq. (1) of this
© 1999 The American Physical Society 1265
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Reply in its mathematical structure (lhs) as well as in the
meaning of the sources s and the surface response Ds (rhs).
Particularly Ds � 0 reduces Eq. (1) to the DA, whereas
s�x� � 0 in Eq. (6) of CP leads inevitably to E�x� 	 0,
because a global solution of the homogeneous Eq. (6) of
CP does not exist in contrast to the reasoning in point (b)
of ZC.

(B) Zeyher in his Ref. [2] in a sense “derives” the
Pekar ABC, r�v� � 21, assuming ideal reflection of an
exciton at the boundary. However, this assumption is
neither generally valid nor convincing from a theoretical
point of view. For example, in a paper by Ting, Frankel,
and Birman (TFB) (compare Ref. [5] of CP) r�v� �
11 is derived assuming ideal reflection for the electron
and the hole separately. This demonstrates clearly that
consideration of exciton reflection by introducing r�v� in
x merely displaces the ABC problem solving ME for the
field, to the r�v� problem solving the equation of motion
for the susceptibility x .

It is to be stated, however, that x is not appropriate to
consider the intuitive idea going back to Pekar on exci-
ton reflection at the boundary. Quite general and regard-
less of the simplifying treatment of electron-hole pairs as
1s excitons, both exciton-photon and exciton-phonon in-
teraction are crucial insofar as they describe just the ef-
fects under consideration, namely, formation of polaritons
and absorption, respectively. In a description appropriate
for this many-body system (compare Ref. [10] of CP) the
response to the effective field, x � dj�dAeff, has not an
autonomous physical meaning concerning propagation of
quasiparticles but enters the Dyson equation for the pho-
ton Green’s function (GF) as self-energy. The photon
GF, however, coincides up to prefactors with the exci-
ton GF, both having their poles at the polariton dispersion
and describing the same physics, namely, the propaga-
tion of field fluctuations as (damped) polaritons. Clearly
speaking, what propagates through the crystal towards the
boundary are damped polaritons being either reflected,
or transmitted as vacuum photons. This problem should
be addressed by the Dyson equation for the photon GF
reflecting most clearly the underlying physics of field
fluctuations.

It can be proved easily that adding Dx � reiqex�x1x0� to
x0 is neither necessary nor consistent to describe exciton
reflection at the boundary: Assuming r � 0, i.e., Dx � 0
and, hence, x � x0, the photon GF can be exactly calcu-
lated within the DA. Since it yields reflection coefficients
ra�v, x0� fi 0 for each polariton branch a and any po-
lariton wave carries excitonic contributions too, this result
contradicts the assumption. Also the generalized MBC ap-
proach of CP considers exciton reflection at the boundary.
For that reason the photon GF has been explicitly given in
the last part of CP.

In summary, the MBC approach presented in CP does
not exhibit the bad mistakes alleged in both Comments,
which result merely from confusing Eq. (1) of this Reply
with Eq. (6) of CP and comparing quantities Ds and s that
1266
must not be compared directly. In spite of that, it is true
that the idealization of the MBC approach of CP has a
restricted range of validity, l ¿ a ! 0, and may fail in
specific situations, where it cannot replace a more serious
consideration of surface effects. This is explicitly stated
already in CP. The reasoning to obtain the Pekar ABC does
obviously not fill this gap but, for the very restricted case
of the HM and half-space geometry, it yields an alternative
idealization r�v� � 21 instead. Surprisingly, in this
specific case the idealization proposed in CP corresponds
choosing r�v� � 11. Thus, the reasoning of TFB to
obtain their ABC, although being completely independent
of and different from that of CP, confirms and supports
this proposal. Moreover, as I have been informed only
recently, Davidov and Eremko [4] already in 1973 used
the method proposed in CP within the HM. The MBC
approach of CP generalizes these results and presents the
underlying principle: It describes the wave penetrating the
medium from the surface by Eq. (12) of CP, and, thus,
provides a solution of the ABC problem for arbitrary layer
geometries in terms of the exact bulk susceptibility. For
half-space geometry its result fulfills the ABC of TFB
which, however, is not sufficient to fix the problem in
any realistic case, i.e., where more than one resonance is
considered in xb . Quite generally, it does not provide a
further ABC in that sense, that it requires the behavior of
the polarization at the boundary a priori, but, as it should
be, fixes it a posteriori depending on both the medium
properties and the layer geometry. This point should have
been addressed by the title of CP, which apparently has
led to that confusion, that it claimed to having solved the
surface problem completely. For this purpose one would
need a Hamiltonian of the system comprising both medium
and vacuum and addressing the surface consistently on the
same many-body footing on which the properties of all
the quasiparticles (electron-hole pairs, phonons, photons)
and their interactions have been obtained for the bulk. As
long as a treatment of this problem seems out of reach,
a pragmatic way would be to consider in CP at least
the finite range of the source region, using in Eq. (10)
sa�v, a� for a fi 0 instead of s0�v�. Fitting then a from
experimental data may prove whether the idealization of
the MBC approach applies.
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