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I nter mittency, Log-Normal Statistics, and Multifractal Cascade Process
in High-Resolution Satellite Images of Cloud Structure
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We apply a wavelet based deconvolution method to LANDSAT satellite images of cloudy scenes.
This method proves to be very efficient to disentangle the convective cell anisotropic texture from
the isotropic scale invariant background radiance fluctuations. We show that the experimental data
do not alow us to discriminate between various phenomenological cascade models that account for
intermittency and their log-normal approximations. We comment on the multifractal properties of
stratocumulus radius fields comparatively to fully developed turbulence data.

PACS numbers: 92.60.Nv, 47.27.Jv, 47.53.+n, 92.60.Jq

The problem of nonlinear variability over a wide range
of scales has been considered for a long time with respect
to the highly intermittent nature of turbulent flows [1].
Specia attention has been paid to their asymptotic and
possibly universal behavior when the dissipation length
goesto zero. The atmosphere is a huge natural laboratory
where high Reynolds number turbulent dynamics can
be studied. Clouds are the most obvious manifestations
of the Earth’'s turbulent atmospheric dynamics [2]. By
modulating the input of the solar radiation, they play a
critical role in the maintenance of the Earth's climate.
They are also one of the main sources of uncertainty
in current climate modeling [3]. Until quite recently,
the internal structure of clouds was probed by balloons
or aircrafts that penetrate the cloud layer, revealing an
extreme variability of 1D cuts of some cloud fields, e.g.,
liquid water content (LWC) [4]. An dternative to in situ
probing is to use high-resolution satellite imagery that
now provides direct information about the fluctuations in
LWC in the depth of clouds. These sophisticated remote
sensing systems have confirmed the intermittent character
of these fluctuations [5] which is hardly a surprise in such
highly turbulent environments.

Since Parisi and Frisch [6], it has now become routine
to apply multifractal concepts to characterizing the inter-
mittent behavior of velocity or other observable turbulent
fields. As emphasized in Ref. [7], a very efficient alter-
native to the commonly used structure function method
[1] consists in using the continuous wavelet transform
(WT). Actually, the WT skeleton defined by the wavelet
transform modulus maxima (WTMM) provides an adap-
tive space-scale partitioning from which one can extract
the entire D(h) singularity spectrum via the scaling expo-
nents 7( p) of some partition functions defined on the WT
skeleton. Very recently, the WTMM method has been
generalized to multifractal image analysis [8]. Prelimi-
nary application to LANDSAT scene of a marine stratocu-
mulus (Sc) yields a 7(p) spectrum that clearly displays
a nonlinear behavior, the hallmark of multifractality [8].
A comparative statistical analysis of stochastic models of
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clouds [9,10] legitimates the relevance of the multifrac-
tal description of intermittency in cloud satellite images.
But multifractal spectra are nothing else than thermody-
namical potentials which contain only some degenerate
information about the underlying multiplicative process.
Thus, if one can compare the experimental 7(p) and D (h)
spectra to the predictions of various cloud models, by no
means will they provide a selective test to discriminate
between these models.

In the context of fully developed turbulence, Castaing
et al. [11] have proposed some origina approach of
intermittency. It amounts to modeling the evolution of
the velocity increment probability density function (pdf)
from Gaussian at large scales to more intermittent profiles
with stretched exponential-like tails at smaller scales, by a
functional equation that relates two scaes I’ > [ using a
kernel G:
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Indeed most of the well-known multiplicative cascade
models, including the log-stable [9,12] and the log-
infinitely divisible [13] cascade models, can be reformu-
lated within this approach. This amounts (i) to specify
the shape of the kernel G(u) which is determined by
the nature of the elementary step in the cascade and (ii)
to define the way G, depends upon [/ and /. From
Eg. (1), one can show that, for any decreasing sequence
of scaes (I1,1,...,1,), one has G, ;, = G;;, , ® --- ®
G,1,, where ® denotes the convolution product. The cas-
cade is continuously self-similar [11,13(b)] if there exists
a positive, monotonous function S(/7), such that G;(u) =
Glu,S(,1)], where S(I,1") = S(I) — S(I'). The cascade
is scale-similar [13(a)] if the number of cascade steps
from I’ to I behaves as S(1,1’) = In(l'/1). In Ref. [11],
Castaing et al. mainly focused on the scaling behavior
of the variance of G. In Ref. [14], a generalization of
Eqg. (1) to the WT of the velocity field has been shown
to provide access to the entire shape of G. The aim of
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the present study is to extend this wavelet-based decon-
volution technique from 1D to 2D signals with the spe-
cific goal to improve statistical characterization of high-
resolution satellite images, a prerequisite for developing
better models of cloud structure and furthering our under-
standing of cloud-radiation interaction.

In recent years, there has been increasing interest in the
application of the WT to image processing. In Ref. [15],
Mallat et al. have extended the WTMM representation in
2D in the spirit of Canny’s multiscale edge detectors. The
idea is to first smooth the digital image by convolution
with a filter, then compute the gradient of the smooth
signal. Define two wavelets: ¢ (x,y) = d6(x,y)/dx and
Yo(x,y) = 00(x,y)/dy, where 6(x, y) is a 2D smoothing
function well localized around x = y = 0. For any
function f(x,y) € L*(R?), the WT defined with respect
to ¢ and ¢, can be expressed as a vector [15]:

Ty f1(b,a) = V{To[ f1(b,a)}, 2

where Ty[ f1(b,a) = a2 [[7260(=2)f(r)d?r. If 6 is
just a Gaussian 6(r) = exp(—r2/2), then Eq. (2) defines
the 2D WT as the gradient vector of f(r) smoothed by
dilated versions 6(r/a) of this filter [15]. At a given
scale a, the WTMM are defined by the positions b where
the WT modulus M,[ f]1(b,a) is localy maximum
in the direction A,[f](b,a) of the gradient vector
Ty[ f]. As reported in Ref. [8], when analyzing rough
surfaces, these WTMM lie on connected chains. Then the
WTMM maxima (WTMMM) are identified as the loca
maxima of ‘M aong the WTMM chains (Fig. 1). The
generalized 2D WTMM method consists in computing
partition functions from these WTMMM [8(b)]. These
WTMMM are disposed along connected curves across
scales. The WT skeleton defined by these maxima lines
contains a priori al the information about the hierarchical
organization of the singularities of the function f(x,y).
In particular, one can prove [8(b)] that, provided the first
n, moments of ¢ are zero, then M, ~ a"™ aong a
maxima line pointing to the point ry in the limit a — 0,
where h(ry) (<ny) isthe local Holder exponent of f.
Stratocumulus are one of the most studied cloud types
[4,5]. Being at once persistent and horizontal extended,
marine Sc layers are responsible for a large portion of
the Earth’s global abedo, hence, its overall energy bal-
ance. We start with a large (=196 X 168 km?) cloudy
LANDSAT scene captured with the Thematic Mapper
camera (=28 m resolution) in the 0.5-0.6 um channel
during the First ISCCP Regional experiment off the coast
of San Diego, Cdlifornia, on 7 July 1987. Figure 1(a)
shows a typical 1024 X 1024 pixels portion of the origi-
nal image where quasinadir viewing radiance at satel-
lite level is digitized on an eight-bit grey scale. To
master edge effects, we select 25 overlapping 1024 X
1024 pixels subscenes in the cloudy region. In Fig. 1(b)
we show the WT modulus of a 256 X 256 pixels por-
tion, computed at scale ¢ = 68 (1904 m) with a first-
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FIG. 1. 2D WT analysis of a marine Sc LANDSAT image.
0(x,y) is Gaussian. (a) 256 grey-scale coding of a 1024 X
1024 pixels portion of the origina radiance image. (b) WT
modulus of the 256 X 256 pixels portion delimited by the
square in (&), a = 68 (1904 m); M,, is coded using 32 grey
levels from white (M, = 0) to black (maxM,). (c) The
corresponding WTMM chains, the local maxima of M, along
these chains are indicated by (X) from which originates the
vector T,[ f]. (d) Same as (c) but at scale a = 34 (952 m).

order analyzing wavelet (n, = 1) taking 6 as a Gaussian.
The corresponding WTMM chains are shown in Fig. 1(c).
The local maxima of M, aong these chains are indi-
cated by (X). Asshownin Fig. 1(d), when decreasing a,
the number of WTMMM increases like ¢ 2, which means
that the support of the singularities of the radiance field
has a dimension d = 2. In Figs. 2(a) and 2(b) are re-
ported the results of the computation of the WTMMM
pdf's P,(M) and P,(A) for three different scales. In
Fig. 2(c), the pdf’s of M are revisited when using aloga-
rithmic representation. The first important message which
comes out from our anaysis is illustrated in Fig. 2(d):
P(M,A)=P,(M)P,(A); i.e, the modulus and the
argument of the WTMMM are independent whatever the
scale a, from ay;, = 13 (364 m), below which our ana-
lyzing wavelet is not resolved [16], up tO0 amax = 208
(5824 m), the largest scale for which P,(M) and P,(A)
are still well defined distributions.

As shown in Fig. 2(b), P,(A) is clearly scale depen-
dent with some evidence of anisotropy enhancement when
going from small to large scales. Two peaks around
the values A = —7/10 and 97 /10 become more and
more pronounced as the signature of a privileged di-
rection in the analyzed images. As seen Fig. 1(a), this
direction is nothing but the perpendicular to the mean di-
rection of the convective rolls that are generally aligned
to the wind direction. Thus, a large scales, the WT
microscope is sensitive to the convective cell texture, a
rather regular pattern superimposed to the background
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FIG. 2. pdf'sof WTMMM coefficients at scaesa = 17 (@),
34 (O), and 68 (X). 0(x,y) is Gaussian. (@) P,(M) vs M.
(b) P,(A)vs A. () In[P,(InM)]vsInM. (d) In[P,(In]M)]
vs InNM at scale a = 17, when conditioning the modulus M
to the argument A =0 = #/8 (O), w/4 = =/8 (M), and
7/2 * 7 /8 (A). The solid lines in (a) and (c) correspond to
the log-normal approximation of the histograms.

radiance fluctuations. Note that the number of corre-
sponding WTMMM with an argument A = —7 /10 or
977/10 increases similar to a~! (the dimension of the
edges of therollsisd = 1), i.e., much slower than a2 as
observed for the other WTMMM. What Fig. 2(d) tells
us is that this progressive extinction of the convective
cell texture anisotropy does not affect the scaling prop-
erties of P,(2M). When plotting InP,(In2M) vs InM,
one gets in Fig. 2(c) the remarkable result that, for any
scale a € [amin, amax ], Al the data points fall, within a
good approximation, on a parabola, which suggests that
the WTMMM have alog-normal statistics.

Along the line of the Castaing et al. ansatz [Eq. (1)],
P,(M) a scde a can be expressed as a weighted
sum of dilated pdf's at a different scale o’ > a. Let
M(p,a) = [e?"Mp,(M)dM be the characteristic
function associated with the logarithm of the WTMMM at
scale a; then the Fourier transform G of the kernel G can
be computed on G, (p) = M(p,a)/M(p,d’), provided
M(p,a’) do not vanish [14]. From the convolution
property of G and the additivity of the function S,
the cascade is continuously self-similar if G,. can be
expressed as

Gaa’(p) = G(p)S(a,a’)‘ (3)

Our numerical results for the modulus and the phase
of Guu(p) are reported in Fig. 3. As long as amp, =<
a < a' = ama, this kernel is very well fitted, for —4 <
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vs p, for a =28, a’ =56 (@), a =19, o’ =56 (O), and
a=19,d =76 (X). The solid lines represent fits of the data
with alog-normal kernel. (c) m(a,a’) = —a1m(G.a)/dpl,—o
vsIn(a'/a); (d) o?(a,a’) = a*(n|G.al)/dp>l,-0 Vs In(a'/a),
for o’ =28 (@), 39 (O), 56 (X), and 79 (A). The solid
lines correspond to linear regression fits with slopes m =
0.40 = 0.02 and o2 = 0.084 = 0.06, respectively.

p =4, by the Fourier transform of a log-normal ker-
nel [14]: Guu(p) = expl(—imp — T=)S(a,a’)]. Thus,
with the available statistics, one cannot distinguish the
various log-infinitely divisible [13] and log-stable [9]
cascade models from their log-normal approximations.
This result is quite consistent with the observation that
P,(M) has nearly a log-norma shape [Fig. 2(c)]. In
order to test scale similarity, we plot, in Figs. 3(c) and
3(d), m(a,a’) = —alm(Gaa,)/apl,,zo and o2(a,d) =
32(IlGual)/ 9 p*l 0 as functions of In(a’/a). 1tis strik-
ing that the data obtained, when fixing the largest scale
a’ and varying the smallest one a, all fal on the same
unique straight line whatever ¢/. Thisis an unambiguous
experimental evidence for scale invariance: The number
of cascade steps scales as expected S(a,a’) = In(a’/a).
From the slope of m(a,a’) and o%(a,a’), one gets m =
0.40 + 0.02 and o> = 0.084 + 0.006, respectively. In
Fig. 4(a) are shown the 7(p) spectra computed with the
2D WTMM method with a first-order (n, = 1), and a
third-order (ny, = 3) analyzing wavelet. The data clearly
do not depend upon the shape of ¢ as it should be for a
scale-invariant self-similar process[7]. Moreover, the ex-
perimental spectra remarkably coincide with the quadratic
log-normal prediction 7(p) = mp — o*p?/2 — 2, when
using the parameter values extracted from the kernel in
Fig. 3. The corresponding D(h) singularity spectrum is
shown in Fig. 4(b). Up to the numerical uncertainty,
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FIG. 4. Multifractal spectra computed with a first-order (@)
(6 = Gaussian) and a third-order (O) (@ = second derivative
of Gaussian) analyzing wavelet. (a) 7(p) vs p. (b) D(h) vs h.
The solid lines correspond to the log-normal predictions. The
multifractal spectra of velocity (dotted line) and temperature
(dashed line) fluctuations in fully developed 3D turbulence are
shown for comparison.

its overal parabolic shape has its maximum equal to 2
for h = m = 0.40. This is a strong indication that the
radiance field of marine Sc is singular everywhere and
displays isotropic multifractal properties. Let us point
out that, from the estimate of 7(2) = —1.37, one deduces
the following value 8 = 4 + 7(2) = 2.63 for the scaling
exponent of the spectral density, in good agreement with
previous estimates [4,5].

In summary, we have shown that the anisotropic texture
induced by the convective rolls is nothing but a super-
imposed structure that does not affect the isotropic scale-
invariant properties displayed by the radiance fluctuations.
These fluctuations are found to have log-normal statis-
tics on the widest range of scales accessible to our 2D
WT microscope. Moreover, our findings for the kernel
G, strongly indicate that intermittency in the marine Sc
radiance field can be understood in terms of a continu-
ous self-similar log-normal multiplicative process. Let us
point out that a previous 1D WT analysis of the veloc-
ity fluctuations in high Reynolds number turbulence has
come to similar conclusions [14]. In Fig. 4 are shown for
comparison the 7(p) and D(h) spectra obtained for a tur-
bulent velocity signal recorded at the Modane wind tunnel
(R) = 2000) [14]. [Indeed 7(p) — 1 and D(h) + 1 are
represented in order to compare 1D to 2D data] These
quadratic spectra differ from the results obtained for the
Sc cloud. They have a common feature; i.e., the most
frequent Holder exponent in the radiance field h = m =
a1/dplp=0 = 0.40 = 0.02 is undistinguishable from the
corresponding exponent m = 0.39 = 0.01 found for the
turbulent velocity field. The main difference comes from
the nonlinear term in 7( p) which is much stronger (o> =
0.084 =+ 0.006) for the cloud than for the turbulent veloc-
ity (6> = 0.036 = 0.004). This is the signature that the
radiance field is more intermittent than the velocity field.
Asseenin Fig. 4(b), the D (k) spectrum is unambiguously
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wider for the former than for the later. In Fig. 4 are also
reported the multifractal spectra of the temperature fluctu-
ationsrecorded ina R, = 400 turbulent flow [17]. These
spectra are remarkably similar to those of the marine Sc
radiance field. This suggests that radiance intermittency
captured by the LANDSAT satellite is statistically equiva
lent to the intermittency of a passive scale in fully devel-
oped 3D turbulence.
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