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Charge-Density-Wave Ordering in Half-Filled High Landau Levels
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We report on numerical studies of two-dimensional electron systems in the presence of a
perpendicular magnetic field, with a high Landau level (index N $ 2) half filled by electrons. Strong
and sharp peaks are found in the wave-vector dependence of both the static density susceptibility and
the equal-time density-density correlation function, in finite-size systems with up to twelve electrons.
Qualitatively different from the partially filled lowest (N � 0) Landau level, these results are suggestive
of a tendency toward charge-density-wave ordering in these systems. The ordering wave vector is found
to decrease with increasing N .

PACS numbers: 73.20.Dx, 73.40.Kp, 73.50.Jt
Two-dimensional (2D) electron gas systems subject
to a perpendicular magnetic field display remarkable
phenomena, reflecting the importance of electronic corre-
lations. The most important among them is the fractional
quantum Hall effect (FQHE), which was found in the
strong field limit, where the electrons are confined to the
lowest (N � 0) or the second (N � 1) Landau levels.
The physics of FQHE is reasonably well understood [1]:
the kinetic energy of the electrons is quenched by the
strong perpendicular magnetic field and the Coulomb in-
teraction dominates the physics of the partially filled
Landau level; at certain Landau level filling factors (n, de-
fined to be the ratio of the number of electrons to the num-
ber of Landau orbitals in each Landau level) the electrons
condense into a highly correlated, incompressible quan-
tum fluid, giving rise to quantized Hall resistivity (rxy)
and thermally activated longitudinal resistivity (rxx).

Experimentally, the FQHE has never been found at
filling factors n . 4, when the partially filled Landau
level has Landau level index N $ 2 (taking into ac-
count the two spin species of the electrons). Nevertheless,
recent experiments [2,3] on high quality samples have
revealed remarkable transport anomalies for n . 4, es-
pecially when n is near a half integer, which means the
partially filled Landau level is nearly half filled. Such
anomalies include a strong anisotropy and nonlinearity in
rxx . They reflect intriguing correlation physics at work
in these systems that is qualitatively different from the
FQHE and yet to be completely understood.

It was argued [4], before the discovery of the FQHE,
that the ground state of a 2D electron gas in a strong
magnetic field may possess charge density wave (CDW)
order. Recent Hartree-Fock (HF) calculations [5–7] find
that single-Slater determinant states with CDW order have
energies lower than the Laughlin-type liquid states for
N $ 2. The CDW state with 1D stripe order, or stripe
phase [5–7], which is predicted to be stable near half
filling for the partially filled Landau level, can in principle
give rise to transport anisotropy as the orientation of the
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stripe picks out a special direction in space. Questions
remain, however, with regard to the stability of the HF
states against quantum fluctuations as well as disorder,
especially when N is not too large.

In this paper we report on results of numerical studies
of partially filled Landau levels with N $ 2, in finite
size systems with up to Ne � 12 electrons and torus
geometry. The torus is ideal for this study, because,
while it maintains translational and rotational invariance
in the plane for the infinite system, it does break them for
finite sizes and therefore produces a preferred direction
that allows for the CDW state to be aligned in one
direction. The spherical geometry (which is another
popular geometry for finite size studies), on the other
hand, will rotationally average the state and necessarily
introduce defects. We assume the magnetic field is
sufficiently strong so that the filled Landau levels are
completely inert and mixing between different Landau
levels can be neglected. We calculate numerically the
energy spectra, the wave vector dependence of the static
density susceptibility [x�q�], and the density-density
correlation in the ground state [S0�q�]. We find strong
and sharp peaks in both x�q� and S0�q�. These results are
strongly suggestive of a tendency toward charge density
wave ordering in the ground state. In accordance with
this, we find nearly degenerate low-energy states that are
separated by the ordering wave vector.

The methods used in the present study are identical
to those used in numerical studies of the partially filled
lowest Landau level [8]. Since the kinetic energy is
quenched by the magnetic field, the Hamiltonian contains
the Coulomb interaction alone, which, after projecting
onto the N th Landau level [8], takes the form

H �
X
i,j

X
q

e2q2�2�LN �q2�2��2V �q�eiq?�Ri2Rj�, (1)

where Ri is the guiding center [8] coordinate of the
ith electron, LN �x� are the Laguerre polynomials, and
V �q� � 2pe2�q is the Fourier transform of the Coulomb
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interaction. The magnetic length � is set to be 1 for
convenience. In this work we impose periodic boundary
conditions in both x and y directions in the finite-size
system under study, and the q’s are wave vectors that are
compatible with the size and geometry of the system. We
diagonalize the above Hamiltonian exactly and calculate
various correlation functions.

In Fig. 1 we present the energy spectrum of a half-
filled N � 2 Landau level with ten electrons, rectangular
geometry, and aspect ratio 0.75. The spectrum is quali-
tatively different from the known incompressible FQHE
states in the following aspects: (i) the ground state is not
separated from the excited states by a gap; instead, there
are several nearly degenerate low-energy states, separated
by a characteristic wave vector q� (the physical impor-
tance of q� will be discussed later). This almost exact
degeneracy is not specific to this particular geometry; in
Fig. 2 we have plotted the energy levels (for all momenta)
versus aspect ratio a, in which it is clear that the near
degeneracy is present for 0.7 , a , 1.0. A gap in the
spectrum, on the other hand, is the most important prop-
erty of a FQHE state that gives rise to incompressibility.
(ii) The momentum of the ground state is, in general, not
related to any reciprocal lattice vectors and is sensitive to
the geometry of the system; such sensitivity to boundary
conditions is characteristic of compressible states. The
known FQHE states, however, all have ground state mo-
mentum equal to one half of a reciprocal lattice vector and
are independent of system geometry, reflecting intrinsic
topological properties of the state. The spectra and quan-
tum numbers of these ground states are also very different
from the Fermi-liquid-like compressible state at half fill-
ing in the lowest Landau level [9]. In that case clusterlike
ansatz variational wave functions [10,11] have remarkably
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FIG. 1. Energy (in unit of e2�e�) versus the x component
of the momentum for the half-filled N � 2 Landau level with
ten electrons, rectangular geometry, and aspect ratio 0.75. The
momenta of the five nearly degenerate low-energy states are
�60.485, 0�, �61.456, 0�, and �2.427, 0�.
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large overlaps with the exact ground state and, from the
shape of the optimal cluster for a given geometry, pre-
dict the momentum of the ground state with remarkable
accuracy [11]. The momenta of the ground states here,
however, do not match those of the optimal cluster states.
Important differences are also seen in the response func-
tions studied below. We thus conclude that these states
are compressible and have properties that are qualitatively
different from the Fermi-liquid-like compressible state at
half filling in the lowest Landau level.

We now turn to the discussion of response functions.
Here the fundamental quantity of interest is the dynamical
structure factor, defined to be

S0�q, v� �
1

Ne

X
n

j�0j
X

i

eiq?Ri jn�j2d�En 2 E0 2 v� .

(2)

The summation is over states in the given Landau level
that is being studied. Various physically important quan-
tities may be calculated from S0�q, v� [8]; in particular,
the projected static density response function is the in-
verse moment of S0�q, v�:

x�q� �
Z `

0
dvS0�q, v��v , (3)

and the projected equal time density-density correlation
function is the 0th moment of S0�q, v�:

S0�q� �
Z `

0
dvS0�q, v� . (4)

In Figs. 3 and 4 we present the q dependence of x�q�
and S0�q� for half filled N � 2 and N � 3 Landau levels,
respectively. The data were taken from systems with 10
electrons and rectangular geometry, for several different
aspect ratios. We see sharp and strong peaks in x�q� at
q� � �0.97, 0� and q� � �0.84, 0� for N � 2 and N � 3
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FIG. 2. Energy levels versus aspect ratio for half-filled N � 2
Landau level with ten electrons and rectangular geometry. The
inset is a blowup of the low-energy spectra for aspect ratio
between 0.7 and 1.0; the energies have been multiplied by 104.
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FIG. 3. S0�q � and x�q � (in unit of e��e2) for half-filled
N � 2 Landau level with ten electrons. The data were taken
from systems with rectangular geometry, and a number of
different aspect ratios. The highest peak value for S0�q � and
x�q � are 3.7 and 39726.3, respectively, which occur at aspect
ratio 0.75.

Landau levels, respectively. At the scale of the peak value
of x , the response at different q’s is indistinguishable
from zero, except for a secondary peak positioned at
exactly 3q�, the height of which is much smaller but quite
noticeable.

This is strongly suggestive of a tendency toward CDW
ordering, as an (unpinned) CDW responds strongly to
an external potential modulation with a wave vector that
matches one of its reciprocal lattice vectors. The fact that
secondary peaks appear only at integer multiples of the
primary wave vector (q�) suggests that the CDW has 1D
(stripe) structure. The absence of response at 2q� (and
any other even multiples) is consistent with the presence of
particle-hole (PH) symmetry in the underlying Hamilton-
ian at half filling: the PH transformation of the CDW state
is equivalent to translation by half a period. Consistent
with the stripe CDW picture, sharp peaks are also observed
in S0�q� at q � q�, indicating strong density-density cor-
relation in the ground state at the ordering wave vector.
Similar behavior is also seen at higher Landau levels and
other filling factors. Again, these results are in sharp con-
trast with FQHE states (like n � 1�3 in the lowest Landau
level), or the Fermi liquid-like state of the half-filled low-
est Landau level. In the former case, x is small (below 20)
for all q’s due to the large gap in the spectrum [8]; while in
the latter case although there are peaks in both x�q � and
S0�q �, the peak position is tied to q � 2kF � 2 and the
height of the peak in x�q � is in general much smaller than
those seen here and the peaks are broader [11].

The origin of the strong peaks in x at q� may be
traced to the almost exact degeneracy of the low-energy
FIG. 4. Same as in Fig. 3, for N � 3 Landau level. The
highest peak values are 4.17 and 2 953 432.4, respectively,
which occur at aspect ratio 0.56.

states in the spectra that are separated by q�. Since
these states are connected by a potential modulation with
wave vector q�, an extremely small energy denominator
ensures huge response from the system. We emphasize
that such near degeneracy is a generic property of the
system and not specific to a particular system size or
geometry [12]. This can be seen clearly in Fig. 1b, where
we plot energy levels from different geometries together.
If the system develops long-range CDW order in the
thermodynamic limit, we would expect the number of
nearly degenerate states to increase with system size; in
the thermodynamic limit, there will be infinitely many of
them, spaced in momentum by q�, that become exactly
degenerate. In this case a ground state that spontaneously
breaks the translational symmetry may be constructed by
taking linear combinations of these degenerate states, even
though this is not possible (unless degeneracy is exact)
in any finite system where all eigenstates must have a
definite momentum.

In Fig. 5 we plot the Landau level dependence of q�

for half filled Landau levels. For systems with a given
number of electrons in a given Landau level, we define
q� to be the modulus of the wave vector that gives the
largest x�q� for all geometries (aspect ratios). Despite
the small and nonsystematic dependence on the number
of electrons, it is clear that q� decreases with increasing
N . We are unable to accurately determine q� beyond
N � 4, as in this case 1�q� becomes comparable to
(and eventually exceeds) the linear size of the largest
size system that we are able to study. This result is
qualitatively consistent with Hartree-Fock theory [5–7],
which predicts that the period of the CDW is set by the
scale of the cyclotron radius in a given Landau level.
1221
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FIG. 5. Estimated ordering wave vector q� versus Landau
level index N . The solid curve is the prediction of Hartree-
Fock theory.

In units of inverse magnetic length, this implies q� ~

1�
p

2N 1 1.
We have also performed numerical studies away from

half filling, at filling factors n � 1�4, 1�3, 2�5, etc., for
Landau levels 2 # N # 6. At all these filling factors,
we have seen qualitatively similar behavior in x and
S0, which are suggestive of a tendency toward CDW
ordering. No evidence of incompressible FQHE states
is found. This is consistent with Hartree-Fock theory,
which predicts [13] no FQHE for N $ 2. Hartree-Fock
theory also predicts that when sufficiently far away from
half filling, the stripe phase becomes unstable against a
different type of CDW ordering, the “bubble phase” [6],
which has a two-dimensional lattice structure. In our
calculations we have seen some indication that this may
be the case; however, more work is needed to make a
clear distinction between these two types of structures.
We leave this to future investigation.

As stated above, the physical properties of the sys-
tems that we have studied here are qualitatively consis-
tent with predictions of Hartree-Fock theory. We also
find that in the single Slater determinant basis for the
wave functions, the Hartree-Fock single Slater determi-
nant (with simple stripe structure) has the highest weight
in the exact ground state. For example, in N � 2 and
N � 3 Landau levels with ten electrons and rectangular
aspect ratios of 0.75 and 0.56, respectively, the highest
weight single Slater determinant has the occupation pat-
tern (in Landau gauge) 11111000001111100000 (and ones
that may be obtained by translating this pattern), where 1
stands for an occupied orbital and 0 stands for an empty
orbital. The maximum weights are 0.1463 and 0.1986
for N � 2 and N � 3 Landau levels; the next highest
weight single Slater determinant has a weight that is ap-
proximately fifteen times smaller for N � 2 and 1400
times smaller for N � 3. However, by making a linear
1222
combination of the five nearly degenerate states we can
single out the above occupation pattern and construct an
approximate eigenstate that breaks translational symme-
try. The overlaps (squared) with HF wave function then
become 0.7338 for N � 2 and 0.9930 for N � 3. While
there are still some fluctuations on top of HF states for
N � 2, these fluctuations are completely gone for N � 3.
Fradkin and Kivelson [14] recently considered the effects
of thermal and quantum fluctuations on the Hartree-Fock
stripe phase, and predicted a number of novel phases. Be-
cause of the limited system sizes in numerical studies, we
are unable to distinguish among these phases (whose dis-
tinctions show up at large distances only).
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