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Magnetotunneling as a Probe of Luttinger-Liquid Behavior
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A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the
tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a
function of both the potential difference between them, V , and an in-plane magnetic field, B. We
show that the two-parameter dependence on B and V allows for a determination of the characteristic
dependence on wave vector q and frequency v of the spectral function, ALL�q, v�, of the quantum
wire. In particular, the separation of spin and charge in the Luttinger liquid should manifest itself as
singularities in the I-V characteristics. The experimental feasibility of the proposal is discussed.

PACS numbers: 71.10.Pm, 72.20.– i, 73.40.Gk
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The physical properties of a one-dimensional electron
system (1DES) are markedly distinct from those of its
higher dimensional counterparts: No matter how weak
the interactions between particles, the 1DES cannot be
described within established Fermi-liquid-like pictures of
interacting fermions. Rather, it is always unstable towards
the formation of a highly correlated state of matter, the so-
called Luttinger liquid (LL) [1]. LL behavior is signaled
by the absence of electronlike quasiparticles and instead is
characterized by separate low-lying collective excitations
associated with spin and charge degrees of freedom. This
phenomenon of spin-charge separation and other features
identifying LL phases have been studied extensively and
various excellent reviews on the subject exist [2–6]. The
continued research activity on one-dimensional systems is
not merely of academic interest as there are a growing
number of physical applications: organic polymers [7];
carbon nanotubes [8]; quantum Hall edge states [9,10];
and ultranarrow quantum wires [11] are believed to fall
into the general class of 1DES’s.

Despite this, the present experimental situation is incon-
clusive. Although previous studies on organic conduc-
tors and superconductors, inorganic charge density wave
materials, semiconductor quantum wires, and fractional
quantum Hall phases (see [5] for a more extensive list of
references) have been consistent with various aspects of
the highly correlated behavior of 1DES’s, an unambiguous
experimental observation of a LL phase is still lacking.

In this Letter, we propose a novel experiment—falling
into the general class of semiconductor transport measure-
ments—which should provide evidence for spin-charge
separation in 1D. The basic experimental device is dis-
played in Fig. 1. A 1DES runs at a height d above a
parallel two-dimensional electron system (2DES). The
1DES and the 2DES are kept at a relative voltage V and an
in-plane magnetic field is applied with a component B per-
pendicular to the wire. A setup of this type may be real-
ized in a number of ways: a double quantum well (DQW)
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heterostructure patterned with appropriate external gates
[12]; a suitably etched resonant tunneling diode [13]; or
an organic polymer or carbon nanotube with an electrical
contact at one end [7,8] placed on an undoped heterostruc-
ture with a shallow 2DES. The presence of a voltage bias
induces the flow of a tunnel current I�V , B� between the
1DES and the 2DES. As will be detailed below, I�V , B� is
essentially determined by the overlap of the spectral func-
tions Ai �i � 2D, 1D� of the two subsystems. By fine tun-
ing the control parameters V and B the overlap integral
changes in a pronounced way, thereby probing features of
both A1D and the (essentially known) A2D . The former
is believed to be governed by the phenomenon of spin-
charge separation. In this way, the 2DES can be employed
as a “spectrometer” scanning the LL characteristics of the
quantum wire.

To formulate the above program quantitatively we
model the device depicted in Fig. 1 in terms of the
Hamiltonian

H � H1D 1 H2D 1 HT , (1)

where H1D , H2D describe the 1DES and the 2DES, re-
spectively. The tunnel Hamiltonian HT transfers electrons
between the 1DES and the 2DES. It is modeled as

HT � t0

Z
dx�e2iedBxC

y
2D,s�x�Cy

1D,s�x� 1 H.c.� , (2)

where Ci,s, i � 1D, 2D are fermionic field operators with
spin s �", # and C2D�x� is a shorthand for the 2DES
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FIG. 1. Device configuration for magnetotunneling between
1DES and a 2DES.
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field operator evaluated at pointx � �x, 0� (see Fig. 1).
We have chosen a gauge where the entire depende
on the magneticfield is contained in the Aharonov-
Bohm phases carried by the matrix elements ofHT . [In
passing we note that the magneticfield needed to drive
the effects discussed below is weak:B � eV�dyF , where
yF is the Fermi velocity of the 2DES. Fields of this
type are not expected to affect the bulk physics of bo
the 1DES and the 2DES.] In writing (1) and (2) two
essential approximations have been made: First, d
effects (i.e., electron-electron interactions between 1D
and 2DES) are neglected. The justification is that at
the low temperatures considered here, standard Fe
liquid arguments applied to the 2DES show that dra
effects are suppressed by a phase space factor�T2 at
temperatureT . Second, it is assumed that tunnelin
occurs between neighboring pointsx [ 1DES$ x [
2DES only (with amplitudet0). Owing to the exponential
dependence of the tunneling amplitude on both the hei
of the tunneling barrier and the tunneling distance, dire
processes are the most relevant by far. By virtue
this assumption, the problem becomes effectively o
dimensional.

To leading order in the amplitudet0 the tunnel current
per unit length is given by [14]

I�V , B� �
4I0

m

Z
dq

Z de

2p
� f�e 2 eV � 2 f�e��

3 A1D�q, e�A2D�q 2 qB, e 2 eV � , (3)

wheref�e� is the Fermi function,m the 2DES electron
mass, andI0 � ejt0j

2m�p the natural unit of current
in the problem. The spectral functionsAi�q, v� �
22�m GR

i �q, v�, where GR
i �q, v� are the Fourier

transforms of the retarded Green functionsGR
i �x, t� �

2iu�t� ��Ci,s�x, t�, Cy
i,s�0, 0�	
 [15].
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The structure of the above integral representation
I�V , B� already reveals the basic idea of this Lette
according to (3) the current is given by the overlap of t
two spectral functions integrated over a window of wid
max�T , eV � at the Fermi energy. As detailed below, th
value of the overlap integral sensitively depends on
two parameterseV and qB � eBd 1 k2D

F 2 k1D
F which

shift the relative origin of the two spectral function
k

1D�2D
F are the Fermi wave vectors of the 1DES an

2DES, respectively. The 1DESA1D�q, v� is expected to
exhibit pronounced structures depending in a nontriv
way on LL characteristics, whereas the spectral funct
of the 2DES is dominated by electronlike quasiparticl
and its important features are explicitly known. Thu
A2D may serve as a“spectrometer” scanning the features
of A1D asqB andeV are varied. In particular,assuming
that A1D is of LL type we show below that the tunne
current is profoundly affected by the phenomenon of sp
charge separation which should give a clear signal of
behavior.

We proceed by specifying the spectral functions e
ployed in calculating the current. Owing to the on
dimensionality of the problem, both functionsAi can
be decomposed according toAi�q� �

P
h�61 Ai,h�qh , v�,

whereAi,1 (Ai,21) represents the contribution of right- an
left-moving charge carriers, respectively. Assuming th
both interactions and disorder are negligible (an assum
tion we discuss below), the functionA2D in the vicinity of
the Fermi surface is then given by (see Fig. 2)

A2D,h�q, v� �
p

2m
Q�v 2 hqyF�
p

v 2 hqyF
. (4)

As for A1D , various forms of LL spectral functions hav
been discussed in the literature. We here employ
function (see Fig. 2)
A1D,h�q, e� � 2
Q�e 2 hqys�Q�hqyr 2 e� 1 Q�hqys 2 e�Q�e 2 hqyr�q

je 2 hqyrj je 2 hqysj
, (5)
n
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where ys and yr are the velocities of spin and charg
density waves, respectively. For the type of systems co
sidered here,yF . yr . ys [16]. Equation (5) was de-
rived in Ref. [5] under the simplifying assumption of no
interactions between left- and right-moving particles (fo
mally that the Luttinger-Liquid parameterKr � 1). This
condition can be relaxed at the expense of the appe
ance of spectral weight outside the limits defined by (5).
This does not alter the main conclusions of this Lette
but would add considerably to the complexity of expos
tion. We therefore leave it for subsequent discussion [1
Substituting Eqs. (4) and (5) into (3), wefind that four
regimesRj , j � 1, . . . , 4 with qualitatively different be-
havior exist. Introducing dimensionless parametersr �
1 1 qByF�eV , ar � yF�yr, and as � yF�ys, these
e
n-

r-

ar-

r,
i-
7].

are given byR1: r , 1; R2: 1 # r # ar; R3: ar # r ,

as; and R4: r . as . A schematic plot of the rela-
tive positioning of the spectral functions in the regimes
R1, . . . , R4, respectively, is shown in Fig. 3 as a function
of the dimensionless 1DES wave vectorx � qyF�eV and
frequencys � v�eV .

The current can now be obtained by double integratio
over q and v. In all regimes the integrations can be
carried out in closed form, although the resulting formula
tend to be somewhat lengthy and partly involve specia
functions, so will be discussed elsewhere [17]. Here w
restrict ourselves to a discussion of the current in th
asymptotic regions where adjacent regimes meet (an
the sensitivity of the result to variations in the externa
parameters is most pronounced).
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FIG. 2. Plot of the two spectral functions in the�q, v� plane
(arbitrary units) foryr � yF�2, ys � yF�3, andr � 1.5.

Figure 4 shows bothI and the differential conductance
G � dI�dV at T � 0 plotted as a function of the
parameterr. We note here that variation ofr may be
achieved not only by varyingB, but also by changing the
relative 2DES or 1DES carrier densities. However, th
would introduce the possibility for capacitive coupling
effects which would make the determination of the L
parameters more difficult [17]. In the following, we
discuss the behavior of the result in the various regim
separately.

R1.—The two spectral functionsA1D and A2D do not
overlap (cf. Fig. 3) implying that the current vanishes.

R2.—For r . 1, the spectral functions start to overla
leading to a (singular) onset of currentflow. At the same
time the conductance diverges asg̃ � 2�r 2 1�21�2,
where we have introduced̃g � G

p
Ve21EF�I0 as a

dimensionless measure for the conductance. The inve
square root behavior of the conductance persists
to the boundary toR3 where g�r ! ar� � 2�ar 2

1�21�aras�as 2 1��1�2.
R3.—As r crosses over intoR3, the conductance

exhibits a second discontinuity, the magnitude of whic
is found to be

g�a1
r � 2 g�a2

r � �
ar

ar 2 1

s
aras

as 2 ar

,

wherea6
r � ar 6 d, d infinitesimal. Note that the jump

is accompanied by a change of sign. Asr approaches
the boundary toR4, the conductance again exhibits
singularity, this time of logarithmic type. More precisely

g�r�
r!as
! 2

as

as 2 1

s
aras

as 2 ar

1
p

ln�as 2 r� .

R4.—The boundary singularity atar turns out to be
symmetric, i.e., for smalle, g�r � as 1 e� � g�r �
as 2 e�. Eventually, for asymptotically larger the
conductance decays asg � r21�2.
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FIG. 3. Relative position of the two spectral functions i
the four regimesR1, . . . , R4. The light (dark) shaded areas
represent the functionsA1D �A2D�.

In summary, we see that the structure of theI-V
characteristic is essentially determined by the two sp
charge parametersar and as . For a more general
Luttinger liquid, withKr fi 1, the power laws associated
with the singular features will be modified, but their
location is determined byar and as allowing these
parameters to be measured. In order to decide whe
this strategy of demonstrating LL behavior is practical,
is imperative to estimate the effect of two ingredients th
tend to blur the above sharp structures of theI-V curve:
finite temperatures and disorder.

As for the effect offinite temperatures, it is intuitively
clear that the structures of theI-V characteristics will
be completely smeared forT larger than any of the
characteristic energy scales (eVar,s , qByFar,s, or any
combination thereof) of the problem. [To see this mo
explicitly, notice that forfinite T the integration in (3) no
longer extends over a sharply defined strip in the�q, v�
plane, but rather over a smeared region of widtheV 6 T ].
However, it has been demonstrated for 2D-2D and 1
2D tunneling in DQW structures that at temperatur
readily available in experiment its effect may be ignore
[12,18,19].

The effects of disorder are more significant and can
be considered individually for the 2DES and 1DES
For the 2DES, 2D-2D tunneling measurements show
effective blurring ofA2D over an energy rangeG, where
t � G21 is the average scattering time in the 2DE
Optimizing G to be smaller than the characteristic energ
scales of the problem (see above) is therefore neces
for the observability of the above effects. In the be
GaAs�AlGaAs DQW systemsG � 0.25 meV [18] and
the conditioneV . G can be easily satisfied [19].

As for the 1DES, the effects of disorder should b
largely absent in the consideration of carbon nanotub
and organic polymers themselves. However, achiev
a 2DES sufficiently close to a heterostructure surface
allow tunneling into these systems is a technologica
1205
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FIG. 4. Tunneling current and differential conductance as
function of the magneticfield (ar � 2, as � 3).

difficult problem, and the resulting 2DES is likely to hav
a largerG than a fully optimized DQW structure [20].
For a surface gate defined 1DES in a DQW the remote
ionized impurities, random impurities, and crystal faul
could be strong enough to pin its low lying excitation
thereby destroying the LL behavior. However, provide
this does not happen, i.e., assuming that a LL phase
quantum wires may existin principle [21], we expect
the disorder to effectively renormalize the characteris
LL parameters, most notably the spin and charge den
wave velocities. Similarly, variations in the thickness o
the tunnel barrier can in principle have a large effect
tunneling rates and therefore the clarity of any measu
signal. At any rate, neither the presence of remo
impurities nor tunnel barrier variations have prevent
experiments in high mobility DQW systems from clearl
resolving structures of the spectral functions of quasi-on
dimensional systems [12].

Summarizing, we have proposed an experiment wh
should allow the detection of Luttinger liquid behavior i
a 1DES by detecting magnetotunneling between the 1D
and a parallel 2DES. We have shown how the parame
characterizing a LL, the ratio of spin and charge veloci
can be determined from the voltage and/or magneticfield
dependence of the tunneling conductance. It was arg
that, notwithstanding the presence of thermal and disor
smearing effects, the experiment should be feasible
means of today’s technology.
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