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Shock Wave Structure in Lennard-Jones Crystal via Molecular Dynamics
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The molecular dynamics (MD) method is applied to study the internal structure of strong steady
shock waves in a Lennard-Jones crystal. We develop two different approaches to MD shock simulation
which enable us to calculate fine-grained profiles of flow variables and their fluctuations in close detail.
In contrast to shock waves in gases and fluids, solid shocks exhibit oscillatory profiles within the shock
front. We study in detail these oscillations by exploring the evolution of velocity distribution, pair
distribution, and potential energy distribution functions across the shock layer.

PACS numbers: 62.50.+p, 02.70.Ns, 47.40.Nm, 82.40.Fp
Understanding the internal structure of a shock wave
is crucial to the development of appropriate continuum
constitutive models as well as theoretical treatments of
shock-induced phenomena, such as detonation. Previous
theoretical studies based either on the linear hydrody-
namic approximation [1,2] (which is valid for weak shock
waves only) or on the Boltzmann kinetic equation [3,4]
(which holds for rarefied gases only) have considered just
certain limiting cases. Recently, the direct Monte Carlo
and molecular dynamics (MD) simulations have been em-
ployed to gain insight into the shock wave structure in
dense gases and liquids [5–9] and to test different theoreti-
cal approaches [9–12] (see also the review by Holian [13]
and references therein). With shock waves in solids, MD
simulations demonstrated that the microscopic mechanism
of their propagation is inherently more complex because
plastic flow is governed by the creation and motion of de-
fects, not by viscous dissipation as in fluids [14–18]. In
early simulations of the plastic deformation under shock
loading, the creation of dislocations within the shock front
has been found [17,18]. Besides, the oscillations of shock
wave profiles in the crystalline solid have been reported
[15,16], although not observed in subsequent studies (pre-
sumably due to the coarse grained averaging grid used to
reduce the noise). Nevertheless, some intrinsic features
of the shock front structure, including evolution of the ki-
netic and potential energy distribution functions, have not
been previously investigated. To obtain fine-grained av-
erages, Klimenko and Dremin [15] developed a “moving
analytical window” technique, which allowed them to cal-
culate the velocity distribution function, but the number of
atoms in their simulation was insufficient for quantitative
description. In this paper, we implement two specially de-
veloped different techniques for MD shock simulation to
obtain fine-grained averages and present computer experi-
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mental results that shed light on the shock wave structure
in solid Lennard-Jonesium.

In our MD simulation the atoms interact via Lennard-
Jones (LJ) pair potential with cutoff at rc � 2.5s:

fLJ�r� � 4e��s�r�12 2 �s�r�6� if 0 , r # rc .

(1)
Hereafter, we use as MD units a fraction of the atomic mass
m�48 and the LJ parameters s and e. The units of time t

and velocity n are then s
p

m�48e and
p

48e�m, respec-
tively. For argon atoms s � 3.405 3 10210 m, e�kB �
119.8 K, t � 3.113 3 10213 s, n � 1094 m�sec, and
the units of density and pressure are 1680.4 kg �m3 and
41.9 MPa . Besides, we devised a modification of LJ
potential by addition a cubic polynomial in r2 to make
both the potential energy and the force decay smoothly to
zero at rc. The modified LJsmooth potential with the same
minimum e at r0 � 21�6s is given by

f�r� � fLJ�r� 2 a2�r2 2 r2
0 �2 2 a3�r2 2 r2

0 �3,

a2 � 23.528901 3 1023,

a3 � 5.758681 3 1024,

(2)

with a2 and a3 (in units of s and e) chosen such that
f�rc� � 0, f0�rc� � 0. For r � r0, f0�r0� is also zero.
The resulting expressions for a2 and a3 are

a2 �
3fc

�r2
c 2 r2

0 �2
2

f0
c

2rc�r2
c 2 r2

0 �
,

a3 �
fc

�r2
c 2 r2

0 �3
2 a2 ,

(3)

with fc � fLJ�rc�, f0
c � f

0
LJ�rc�. The LJsmooth poten-

tial approaches conventional LJ potential as rc tends to
infinity. The main advantages of the proposed modifica-
tion are a better energy conservation and elimination of
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discontinuities at r � rc, which is particularly important
when applying a high order integration method.

Two different ways have been employed to simu-
late a planar shock wave in a three-dimensional crystal
composed of atoms initially placed in perfect face-
centered-cubic (fcc) lattice sites. A shock wave is made
to propagate in the �001� direction along the z axis. The
first technique previously developed in Ref. [8] is in-
tended for steady shock waves, where the computational
MD cell Lx 3 Ly 3 Lz with periodic boundary condi-
tions in the x and y directions is essentially centered on
the shock front at rest. Uncompressed lattice planes are
fed into the MD cell from the right (z . 0) at upstream
shock velocity u0 � 2us, while a finite-magnitude pis-
ton potential fp on the left side (z , 0) slows down the
particles to downstream velocity u1 � 2us 1 up caus-
ing shock compression. The potential fp must satisfy the
condition ≠fp�≠z � 0 at the left boundary z � 2Lz�2
of the cell. It is possible to control the compression and
the strength of a shock wave by adjusting the magni-
tude of piston potential. To form a uniform upstream
flow with initial temperature T0 and mass velocity u0,
the Langevin thermostat is applied on the right side of
the MD cell in which the particles are subjected to the
Langevin force: dyik�dt � 2b�u0dkz 1 yik� 1 jk�t�,
k � x, y, z, where b is the friction coefficient and jk�t� is
the Gaussian random force. To obtain a prescribed tem-
perature T0, these parameters should satisfy the condition
�j2

k � � 2bT0�h, where h is a time step. Furthermore, an
additional thermostat is used to absorb the outgoing par-
ticles on the left side. This technique has been applied
to obtain time averages. The second way is intended for
measuring ensemble averages and can be used for simu-
lation both of steady and of nonsteady shock waves. It
consists in taking an average over repeated simulations
with randomly generated initial positions and velocities
of particles constituting independent systems from an en-
semble. Shock wave in the fcc lattice at rest is initiated
by causing the piston particles at the left boundary of the
MD cell to move at a steady velocity up toward the right
(z . 0). During the movement the piston particles are
constrained to remain at their moving lattice sites (infin-
itely massive cold piston) or else to maintain their mean
velocity in the z direction constant: �yz� � up (heated
piston). As the shock wave moves away from the pis-
ton, the leftmost piston planes are removed while new
lattice planes are appended at the right boundary. This
allows the length of the computational cell to be kept at
around Lz .

The dimensions of the MD cell were 32 by 32 fcc unit
cells in square cross-sectional area (2048 atoms in trans-
verse planes) and about 100 lattice planes in length along
the shock propagation direction. The parameters of simu-
lated shock waves are listed in Table I. The spatial profiles
of averaged quantities are generated by partitioning the z
axis into small bins of the width �0.1s. In our simu-
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TABLE I. Parameters of shock waves in MD experiments.
The initial density r0 � 1.048, c0 � �72e�m�1�2 is 1D longi-
tudinal sound speed, tmax is the maximum shear stress, and DP
is the Hugoniot jump in pressure behind the shock front.

Run up�c0 us�c0 r1�r0 T0 T1 DP�tmax

A 1.45 4.0 1.57 0.18 18.7 13.0 6 1
B 1.19 3.4 1.53 0.18 12.4 16.0 6 1

lations, we employed both time-averaging and ensemble-
averaging techniques. In addition, the moving analytical
window technique from Ref. [15] has been used for com-
parison. The profiles obtained by the three different tech-
niques are in close agreement.

Figure 1 shows these profiles for run A. The distinctive
feature of shock waves in LJ crystal is an oscillatory struc-
ture of profiles within the shock front. Similar phenome-
non has been also observed in early time-averaging MD
simulations [15,16]. It can be attributed to the fact that
the plastic deformation and transformation of the energy
of ordered motion along the z axis into energy of random
(thermal) motion along the x and y axes proceed slowly,
and the wave behaves at the beginning of the shock front
as though the lattice was nearly one dimensional. How-
ever, unlike the nonsteady soliton train in 1D lattices [14],
the oscillatory structure in 3D shock waves is steady even
for weak shocks at low initial temperature [19]. Behind
the oscillation region, the melting transition has occurred
(in run A) accompanied by the shock front spreading [20]
with relaxation of the shear stress to zero.

Since the kinetic energy distribution within the shock
front is nonequilibrium, we use the mean-square fluctu-
ations of the longitudinal yz and transverse yx , yy com-
ponents of the particle velocity given by Txx � 48�y2

x �,
Tyy � 48�y2

y�, and Tzz � 48��yz 2 uz�2� as kinetic tem-
perature components which are equal to the thermody-
namic temperature T at equilibrium. Oscillations of the
profiles in the shock layer are dumped out when the equi-
librium state Txx � Tyy � Tzz is established (at z 	 23.5
in Fig. 1). As observed previously in dense gases and liq-
uids [5,8,17], the longitudinal fluctuation Tzz grows faster
than the transverse ones. Notice that both Txx�z� and
Tyy�z� oscillate nearly in phase with the number density
r�z�, stream velocity uz�z�, potential energy U�z�, and
internal energy E�z� (excluding kinetic energy associated
with the mass stream), but out of phase with Tzz�z�.

The pressure tensor is calculated by the Hardy’s modi-
fication of microscopic formula of Irving and Kirkwood.
The normal component Pzz�z� of the pressure tensor and
2 3 shear-stress 2t � Pzz 2

1
2 �Pxx 1 Pyy� are also

shown in Fig. 1. The first maximum of the shear stress is
located at the center of initial shock (z 	 0), whereas the
second one corresponds to the first minimum in the pres-
sure profiles. Thus the plastic flow under shock loading
achieves its steady state through the shear relaxation
process accompanied by oscillations. This contrasts
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FIG. 1. Profiles U�z�, uz�z�, Tzz�z�, Txx�z� � Tyy�z�, E�z�,
Pzz�z�, �Pxx�z� 1 Pyy�z���2, Pzz 2 �Pxx 1 Pyy��2, and r�z�
for a shock wave at Mach number M � 4 (averaged over 246
configurations from an ensemble). The bin width is 0.13s.

substantially with the viscous shear relaxation process in
fluid shock waves. Hence, it follows that the strain rate
has both elastic and plastic components even for strong
shock waves (up�c0 � 1.5) and that the oscillations
within the shock front accompany the transition from
elastic compression to plastic deformation. As shown
in Table I, the ratio DP�tmax estimated from our MD
experiments is in reasonable agreement with the Holian
conjecture in that it appears to be roughly 10 in 3D
crystals [17,18]. Our previous simulation of fluid shock
waves by the time-averaging technique exhibited ratios
of 9.3 and 10.1 for Mach numbers M � 3.25 and 6.5,
respectively [8].

To gain insight into kinetic features of the shock layer,
we explored the evolution of velocity distribution functions
across the shock front. Figure 2 gives the distribution of
the longitudinal component yz for run A in different bins
of width �0.4s normal to the z axis. Initially, the high-
energy thin tail is generated at the beginning of the shock
front (z . 0.6). Then it grows in amplitude forming the
downstream distribution due to the particle flux in velocity
space. At maximum of the stream velocity (z 	 20.6)
it becomes nearly Maxwellian shifted somewhat into the
region of greater yz . On the other hand, it shifts into the
region of smaller yz at the first minimum of uz�z� (z 	
21.2). It is noteworthy that the distribution variance peaks
at maximum of the Tzz (z 	 0) providing the physical
interpretation for the “longitudinal temperature” maximum
observed in previous works. We emphasize that the
distribution functions of yz within the oscillation region
behind the first peak in uz�z� are close to that of equilibrium
distribution. In contrast, the distributions in bins located
ahead of the first peak (z . 20.6) differ widely from the
Maxwellian.

Figure 3 shows the evolution of the probability density
for the potential energy across the shock layer. It is seen
that the lattice rearrangement appears at the very begin-
ning of the shock front (z . 1.4) forming a high-energy
repulsive tail in the distribution. The corresponding
change in the structure of the LJ crystal is demonstrated
in Fig. 4, where the unsymmetrical pair distribution
function r�2��r; z�, dependent on the distance r in the
xy plane between two particles, is calculated in dif-
ferent bins normal to the z axis (this function is given
by r�2��r; z� � r�2��r; z��r�1��z� � rg�r� for a homo-
geneous system, where g�r� is the radial distribution
function). As can be seen from the figure, a new first
neighbor peak at r 	 0.86 begins to grow (along with
broadening other peaks) before any significant disorder
begins to emerge. Such a behavior is totally different
from that observed in Ref. [8] for a shock wave in a liquid.
It may be explained by elastical compression of the lattice

FIG. 2. Evolution of the longitudinal velocity distribution
f�yz� across the shock layer, M � 4; the bin width is 0.4s.
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FIG. 3. Evolution of the potential energy distribution f�U�
across the shock layer, M � 4; the bin width is 0.4s.

before relief of the shear stress coupled with creation of
dislocations in the shock front region. One can also see
that the location of this new first peak is almost not shifted
when melting the LJ crystal, and that the shift of the first
neighbor shell under strong shock compression exceeds
those of other shells. The curve at z � 232.9 shows
that an appreciable short-range order exists in the shock
compressed fluid, as it was also observed in Ref. [8].

In summary, with these MD techniques developed for
quantitative study of the shock wave structure, we have
carried out the first systematic MD study of the oscilla-
tory structure of shock waves in fcc LJ crystal and have
captured the details of evolution of the velocity and po-
tential energy distributions. We find that the longitudinal
velocity distribution within the shock front is essentially
different from the Maxwellian one. The simulations also
reveal the details of crystal lattice transformation in the
transition from elastic deformation to steady plastic flow
under shock loading through the calculation of pair distri-
bution functions.
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