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Ab Initio Intermolecular Potential of Solid C60 in the Low-Temperature Phase
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We present ab initio calculations for the intermolecular potential of C60 in the low-temperature
Pa3 structure as function of both the rotation angle and the lattice constant. These investigations are
based on density-functional total-energy studies in the framework of the local-density approximation
(LDA). The zero pressure ground-state phase, selected Raman frequencies, and the equation of state
are determined in agreement with experimental data. These results show that despite their well-known
deficiencies, LDA calculations are able to properly describe the angular and distance dependence of the
intermolecular potential for C60 thus emphasizing the importance of short-range chemical bonding in
the Pa3 phase.

PACS numbers: 61.48.+c, 34.20.Gj, 71.15.Nc, 71.20.Tx
The discovery of fullerenes [1] has stimulated a great
deal of experimental and theoretical work. Especially
fullerene solids have gained a lot of attention. This is
based on the fact that they represent a new class of carbon
crystals besides graphite and diamond, offer new options
in materials development due to their large cagelike
structures, and show superconductivity in compounds
with alkali metals [2]. The transition temperatures are
among the highest which have been observed in organic
superconductors.

Fullerene solids show usually very strong intramolecu-
lar C-C bonds as well as very weak intermolecular inter-
actions thus belonging to the class of molecular crystals.
Among all of the fullerene crystals C60 plays a promi-
nent role due to its high molecular symmetry. It is being
formed by 12 pentagons and 20 hexagons with the carbon
atoms at the corners of these pentagons and hexagons.
We have two kinds of bonds: those between atoms lo-
cated at the hexagons only (“short”) and those between
hexagons and pentagons (“long”). The phase diagram has
been studied in great detail. At high temperatures above
260 K, the system shows an fcc structure due to orien-
tational disorder while below this temperature a simple
cubic structure has been observed with four molecules per
unit cell [3]. The centers of the molecules are still lo-
cated on an fcc lattice but with different orientations. The
structure shows Pa3 symmetry. Experiments revealed
that the orientational order is not complete, but two kinds
of optimal orientations coexist; those with short bonds of
one molecule facing the pentagon centers of neighbor-
ing molecules (pentagon orientation) and those where the
short bonds face the center of hexagons on neighboring
C60 molecules (hexagon orientation). These two configu-
rations are almost equal in energy which results in
dynamical reorientations between these two optimal struc-
tures. At about 90 K the orientations are frozen in and a
glasslike transition occurs [4]. At ambient pressure, the
pentagon orientation is energetically favored, while the
hexagon phase is stabilized by applying pressure [5–7].
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Total-energy calculations based on the density-
functional theory in the local-density approximation
(LDA) have been very successful in describing various
properties of the intramolecular bonds: the calculated
bond distances [8] as well as the calculated molecular
eigenfrequencies are in excellent agreement with ex-
periment [9–11]. The latter statement is of particular
importance in view of the fact that also the predicted
displacement patterns of the vibrational modes were
confirmed by experiment [12]. On the other hand, our
understanding of the weak intermolecular forces is much
less advanced. Because full LDA calculations for the
Pa3 structure have not been possible so far, most studies
in the past have been based on model potentials [13–15],
with the semiempirical model of Savin et al. as the most
refined one [16]. Density functional based studies have
been restricted to idealized geometries or tight-binding
descriptions [17–22], which were not able to address the
question of the stable low-temperature phase. The most
sophisticated LDA calculation for the Pa3 structure was
carried out so far only with the approximate Gordon-Kim
approach, but failed to give the proper ground state
[23,24]. This situation clearly demonstrates the need for
a full scale LDA calculation for the low-temperature Pa3
structure of C60.

In this Letter, we present a total-energy study of the
low-temperature Pa3 structure which is based on density-
functional theory in the local-density approximation. We
calculate from first principles the intermolecular potential
both as function of orientation angle and lattice constant.
This allows us to determine the bulk modulus, the equa-
tion of state, the pressure dependence of the ground-state
orientation, and librational frequencies. All results are at
least in qualitative, in some cases even in quantitative,
agreement with experimental observations.

In dealing with the low-temperature Pa3 structure the
major difficulties one is facing are the large number of
atoms in the unit cell (240 atoms) and at the same time
the high accuracy needed for total-energy differences. We
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were able to deal with both by using a mixed basis pseu-
dopotential formulation which has been used successfully
in the past for the calculation of intramolecular phonon
frequencies [11]. However, compared to these calcula-
tions we had to increase the size of the basis set sub-
stantially. Besides localized 2s and 2p functions we had
to use plane waves up to an energy of 17 Ry while for
the intramolecular phonon calculations an energy cutoff
of 12 Ry was sufficient. The increase of the basis set
mainly affected the quantitative aspects of the potential
curve discussed below (e.g., barrier heights), while cal-
culations with a cutoff of 12 Ry already reproduced the
correct ground state. Details of the method as well as
the pseudopotential used can be found in Ref. [11]. For
the exchange and correlation part the Hedin-Lundqvist ap-
proximation has been used [25]. Because of the large size
of the unit cell the calculated results were very insensi-
tive to the sampling of the Brillouin zone as long as the
size of the unit cell was kept constant. Thus for calcula-
tions of the total energy as function of the molecular ori-
entation 1 k-point [2p�a�1�4, 1�4, 1�4�] was enough to
obtain energy differences converged to 5 meV�molecule.
An error of the same size is also introduced by limiting
the plane-wave part of the basis set to 17 Ry, as inferred
by checks with 20 Ry.

In Fig. 1 we show the orientation dependence of the
energy for two different lattice constants. The lines are
cubic spline fits to the calculated results. The molecu-
lar geometry was taken from our previous study [11], and
possible small relaxations of the atomic positions were
neglected. Figure 1a shows the results for the experi-
mental lattice constant a � 14.04 Å. We find two min-
ima at rotation angles of 24.2± and 88.4± corresponding
to the pentagon orientation and hexagon orientation, re-

FIG. 1. Total energy per molecule as function of the rotation
angle a of the Pa3 structure for two different lattice constants.
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spectively. The pentagon angle agrees well with experi-
mental results ranging from 22.5± [4] to 26.5± [26], while
the theoretical angle for the fully ordered hexagon phase
is slightly larger than the experimental values of 82.5±

[4] and 86.5± [26], which are deduced from disordered
pentagon phases. The pentagon orientation is energeti-
cally favored by 40 meV�molecule over the hexagon situ-
ation. The energy barrier between the two minima is
130 meV�molecule. The curvature in the minima deter-
mines the frequency of a totally symmetric libration (Ag

symmetry). The value of 2.7 meV for the pentagon mini-
mum is in perfect agreement with the experimental value
[27,28]. For the hexagon minimum the value 2.5 meV is
slightly lower. We note that our energy barriers cannot
be compared directly with experimental information, be-
cause the energy barrier deduced from experiments refers
to single molecule jumps between the hexagon and the
pentagon orientation and not to a collective reorientation
of the molecules. Calculation of the reorientational bar-
rier for a single molecule requires supercells containing at
least 32 molecules, which is beyond the present day com-
putation capabilities.

The shape of the potential curve in Fig. 1a differs
significantly from those derived from phenomenological
models. For example, the semiempirical model of Savin
et al. [16] predicts a very flat hexagon minimum and bar-
rier energies twice as large as in the ab initio calculation.
These differences come despite the fact that the experi-
mental libron frequency has been used in the construction
of the model resulting in a curvature at the pentagon mini-
mum which is very similar to the one in Fig. 1.

To gain insight into the stability of the orientational
phases under pressure, we have performed similar cal-
culations for a lattice constant a � 13.6 Å, which cor-
responds to a pressure of 1.5 GPa. The results are shown
in Fig. 1b. In this case, the hexagon and the penta-
gon orientation are degenerate (within the accuracy limits
of 5 meV). Results with higher accuracy favor slightly
the hexagon situation. This behavior is in agreement
with pressure data which also indicate a favoring of the
hexagon orientation over the pentagon one with increas-
ing pressure [5,7]. The positions of the minima are hardly
affected but the libration frequencies are now shifted to
3.6 and 3.4 meV for the pentagon phase and the hexagon
phase, respectively. This shift is consistent with Raman
measurements, which find a frequency of 3.7 meV at a
pressure of 1.5 GPa in the pentagon phase [28]. The main
results are summarized in Table I.

So far we have concentrated on the orientational de-
pendence of the intermolecular interaction. We have also
probed the radial part by performing total-energy calcu-
lations as function of the lattice constant, while keeping
the orientation and the radius of the molecules unchanged.
These results were, however, very much more difficult
to obtain than those for the orientational dependence.
Because of the change in lattice constant a 1 k-point
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TABLE I. Angles of local minima of the intermolecular
potential E�a� and librational frequencies calculated from the
second derivative of E�a� for two different lattice constants.

a �Å� amin �P�H� v �meV�
14.04 24.2�88.4 2.7�2.5
13.6 23.9�88.7 3.6�3.4

sampling was no longer enough to obtain energy differ-
ences which are converged to 5 meV�molecule. We had
to use up to 11 k-points in the irreducible part of the
Brillouin zone which increased the computational effort
substantially. To estimate the influence of a possible com-
pression of the C60 molecule under pressure, we have
also determined the total energy for several molecular
radii in the case of the smallest lattice constant consid-
ered below (a � 13.2 Å). For a reduction of the radius
by 0.5%, we already find an energy increase indicating a
very small compression with negligible influence on the
total energy. In Fig. 2 we show the results for the penta-
gon and hexagon orientation. We clearly see that the
pentagon orientation is the absolute minimum; however,
the theoretical lattice constant is slightly smaller than the
experimental value. With decreasing lattice constant the
hexagon orientation finally wins. The calculated values
were fitted with a Murnaghan equation of state. Table II
summarizes results for lattice constant, bulk modulus, and
pressure derivative of the bulk modulus in comparison to
experimental results. The agreement is very satisfactory.
Figure 3 shows the equation of state obtained from the
Murnaghan fit in comparison with experimental data. At
small pressures up to 0.5 GPa the agreement with single
crystal neutron diffraction data of Pintschovius et al. [29]
(taken for a hexagon rich phase at 70 K) is excellent.
The inset of Fig. 3 shows a larger pressure range together
with three results of x-ray diffraction studies. Our theo-

FIG. 2. Total energy per molecule as function of the lattice
constant for fixed orientations corresponding to the two minima
of Fig. 1.
TABLE II. Theoretical lattice constant, bulk modulus, and its
pressure derivative for pentagon and hexagon phases. Experi-
mental values from Ref. [29] correspond to partly disordered
phases at 70 K with predominantly pentagon �P� and hexagon
�H� orientations, respectively.

Orientation amin �Å� B (GPa) dB�dp

Theory P 13.94 12.9 11.7
H 13.90 12.9 12.6

Experiment 83% P 14.5
90% H 13.2 10

retical curve lies well within the range of experimental
data, which exhibit larger scattering at larger pressures. It
should be noted that the measurements of Duclos et al.
[30] (triangles) and Haines and Léger [31] (squares) have
been performed at room temperature and include a volume
jump of �1% due to the transition from the pentagon to
the hexagon phase at �0.3 GPa. However, correcting the
data for this volume jump improves agreement with our
theory only slightly.

Comparing now all of our results to experimental
data we see that LDA calculations certainly describe
the low-temperature phase of C60 in the Pa3 structure
qualitatively correct. This is already a large progress
compared to all semiempirical methods which depend
sensitively on model fitting. A simultaneous description
of the orientational as well as the radial part of the
potential is very difficult to achieve in these methods.
The LDA calculations even give certain properties in
quantitative agreement with experiment as the Ag libration

FIG. 3. Pressure dependence of the relative volume. Solid
and dashed lines are the theoretical results for the pentagon
phase and the hexagon phase, respectively, as derived from
the Murnaghan equation of state with parameters taken from
Table II. Filled dots denote neutron diffraction results for
the hexagon rich phase from Pintschovius et al. [29]. The
inset shows an extended pressure range together with x-ray
diffraction data from Duclos et al. [30] (squares), Haines and
Léger [31] (triangles), and Ludwig et al. [32] (circles).
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frequency, the bulk modulus, and the equation of state at
low pressures.

Currently, all experiments probing the intermolecular
interaction in the low-T phase are influenced by the in-
trinsic orientational disorder. Our results for the angle
dependence of the intermolecular potential for orientation-
ally well-ordered phases thus provide additional informa-
tion not accessible experimentally which can be useful to
improve existing phenomenlogical models. This can also
lead to a better understanding of the high-T rotator phase,
where experimental [33] and theoretical [34] investiga-
tions indicate short-range orientational order reminiscent
to those observed in the low-T phase, but which cannot
be studied directly by first-principles methods due to pro-
hibitively large numerical costs.

It is well-known that LDA fails to correctly describe the
van der Waals (vdW) interaction at large distances. The
success of the present calculation demonstrates that in the
present case corresponding errors are of minor relevance
suggesting that the asymptotic (long-range) regime of the
vdW interaction is not probed in a significant way. The
failure of phenomenological models, which employed only
vdW-type contributions, to even qualitatively describe the
angle dependence of the potential further emphasizes the
importance of the short-range chemical bonding in the low-
T phase. Within the present approach, however, a clear
separation of chemical bonding and vdW-type interactions
is not possible.
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