
VOLUME 83, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JULY 1999
Time-Dependent Ginzburg–Landau Analysis of Inhomogeneous Normal-Superfluid Transitions
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We study the propagation of the normal-superfluid interface under inhomogeneous cooling.
Assuming a uniform temperature gradient we establish the conditions for creating topological defects
for both slow and fast superfluid transitions using the time-dependent Ginzburg-Landau theory. For
fast transitions, we find agreement with the Kibble-Zurek scenario. Experiments where the temperature
change is generated by absorption of a neutron in 3He are discussed.

PACS numbers: 67.57.Fg, 05.70.Fh, 74.40.+k
Superfluid 3He can be heated locally above the super-
fluid transition temperature Tc by absorption of a neutron
[1]. The number of vortices [2] and the thermal energy
[3] generated in this process were measured in recent ex-
periments. It was argued that vortices and other defects
are created when the heated region cools back to the su-
perfluid state. The results of the experiments were in-
terpreted as evidence of the Kibble-Zurek mechanism of
defect formation at a rapid phase transition [4].

The purpose of this Letter is a more detailed analysis
of the defect formation near a propagating second-order
phase interface. The original Kibble-Zurek estimate ap-
plies to a spatially constant temperature T �r, t� � T �t�
which cannot be realized in a condensed-matter system.
These ideas were generalized to inhomogeneous tempera-
ture distribution by Kibble and Volovik [5]. While our
work was in progress, we learned about the numerical
work in Ref. [6]. An important point not discussed in
these papers is that the creation of defects depends on the
amplitude of fluctuations in the system.

The energy released in the nuclear reaction (n 1
3He ! 3H 1 p) is 764 keV. This should be compared to
the energy of an elementary vortex ring created during the
cooldown which is on the order of 10 meV. We are not
looking for a theory that could give a detailed description
of the energy flow through the interval of 7 orders of
magnitude. Instead, we consider the simplest but realistic
model. In particular, we assume that the temperature
is well defined, and use the time-dependent Ginzburg-
Landau (TDGL) theory to determine the dynamics of the
superfluid order parameter. We derive the conditions for
defect formation in both rapid and slow cooling. During
a rapid cooling, a large number of vortices is initially
created in a supercooled region according to the Kibble-
Zurek scenario, and these survive the interaction with the
normal-superfluid (N-S) interface propagating from the
bulk liquid. In a slow cooling, defects are created by
sufficiently strong fluctuations beyond the N-S interface.
The theory can be used for superconductors and superfluid
3He. Being applied to the neutron experiments in 3He, it
confirms the scenario of fast phase transitions.
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Propagation of the N-S interface.—We assume a tem-
perature distribution T �r, t� that has gradient in the x direc-
tion. The length scale of the gradient is l � Tc�≠T�≠x�21

and the time scale of cooling tQ � 2Tc�≠T�≠t�21. The
derivatives are taken at the point where T � Tc. The tem-
perature profile moves along the x axis with the velocity
y � l�tQ .

Our analysis is based on the TDGL model for a scalar
order parameter. We thus neglect the complicated struc-
ture of defects which may exist in real 3He superfluid. As
is well known, the TDGL model can be applied only for
gapless systems (see Ref. [7] for a review). For superfluid
3He, this restricts the temperature to a very narrow vicin-
ity of Tc such that tD�T � ø h̄. Here t is the mean free
time of quasiparticles and D the pairing amplitude. There-
fore, our analysis is valid only for a very initial stage of
the development of a superfluid phase where the charac-
teristic time scale for the variation of the order parameter
is on the order of h̄�Tc. At later stages, when D�T � ex-
ceeds h̄�t, the speed of variations of D decreases and the
characteristic time becomes comparable with t.

We start with the TDGL equation
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� 2aD 2 bjDj2D 1 g

≠2D
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with the standard notations t0 � p h̄�8Tc, a � T�Tc 2

1, b � 7z �3��8p2T2
c , and g � 7z �3�j2

0�12. Here
j0 � h̄yF�2pTc is the superfluid coherence length and
yF is the Fermi velocity. A propagating superfluid-normal
interface has a�x, t� � a�x 2 yt� � �da�dx� �x 2 yt�.
The point x � yt corresponds to T � Tc. For
�da�dx� . 0, the cool part is to the left, while the
temperature front moves towards the hot part at the right.
We introduce dimensionless variables z, t̃, and C:
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The velocity of the temperature front y � l�tQ in
dimensionless form is then
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We look for a solution which propagates with the same
velocity as the temperature front: C�z, t̃� � C�z 2 ut̃�.
Equation (1) reduces to

d2C

dz2 1 u
dC

dz
2 zC 2 C3 � 0 . (4)

The boundary conditions are C ! 0 for z ! 1` and
C !

p
2z for z ! 2`. We assume a real C. It implies

that we neglect the supercurrent which is induced by the
temperature gradient. This is justified in Fermi liquids
because the conversion of the normal heat conduction into
superfluid counterflow occurs at distances much longer
than the characteristic width of the N-S interface [8]. In
3He this limits us to z ¿ 2TF�Tc, where TF � 103Tc is
the Fermi temperature. The linear temperature profile will
cease to hold for z & 2TF�Tc.

We solve Eq. (4) numerically. The results are pre-
sented in Fig. 1 for different values of u. The solution
exists for all values of u. As the velocity increases the
superfluid domain lags behind the temperature front by
the distance z0, which is approximately equal to u2�4.
Equivalently, the time lag t̃0 � z0�u � u�4.

Rapid cooling.—The results in Fig. 1 can be under-
stood using a universal solution of Eq. (4) which is avail-
able in the limit u ¿ 1. There are three overlapping
regions with different behaviors of C as a function of z:
(i) In the region where C is small, we can neglect the cu-
bic term and write C � x exp�2uz�2�. We get

d2x

dz2 2

√
z 1

u2

4

!
x � 0 . (5)

The solution for x is the Airy function shifted towards
negative z by z0 � u2�4. It decays exponentially with
increasing z in the region z . 2z0. (ii) The nonlinearity
of the full equation (4) becomes important around the
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FIG. 1. The order parameter front [solution of Eq. (4)] for
different values of the dimensionless velocity u. The dashed
line gives the solution ignoring all derivative terms in (4).
maximum of the Airy function located at z � 2z0, where
a rapid growth of the order parameter forms the N-S
interface. The position of the interface on the temperature
profile determines the local temperature and thus both the
order parameter magnitude and the spatial dimension of
the interface. It is convenient to use the local coordinate z̃
and C̃ according to z � 2z0 1 z̃�pz0 and C �

p
z0 C̃.

Equation (4) takes the form
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For z0 � u2�4, the last term is small while the first
four terms constitute a parameter-free equation since the
coefficient of the second term equals 2. They determine
the fast increase of C up to its local equilibrium value
C � p

z0. The interface width in z̃ coordinates is on
the order of unity. (iii) In the superfluid region, z̃ ø
21, the solution has the asymptotics C � �2z�1�2 2

�u�4� �2z�23�2 1 O�z25�2�.
A large supercooled normal region is unstable towards

fluctuations of the order parameter. Their growth is de-
termined by the linearized version of Eq. (1). Neglecting
the spatial inhomogeneity, it reduces to

≠C

≠t̃
� ut̃C . (7)

This has the solution C�t̃� � C�0� exp�ut̃2�2� with the
time constant t̃ �

p
2�u. In the case of a constant

temperature, the dominant thermal fluctuations have [9]
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where j�T � �
p

g�a and N�0� is the density of quasi-
particle states at the Fermi surface. According to Zurek,
the dominant fluctuations in a temperature sweep corre-
spond to the temperature TZ which is reached in time t̃,
i.e., 1 2 TZ�Tc �

p
t0�tQ [4]. The length scale of such

fluctuations j̃ � �ut̃�21�2 � u21�4 is fully determined by
u. However, the dimensionless initial amplitude
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is an independent parameter in the theory. Equation (9)
corresponds to a lower limit of fluctuations because ex-
periments may contain also other fluctuations arising, for
example, from nonmonotonous temperature distribution
as in the “baked Alaska” scenario [10]. For simplicity,
we assume that only thermal fluctuations are present.

For large u, the size of a superfluid nucleus is small
compared to the width of the supercooled region: z0�j̃ �
u9�4. The fluctuations grow initially according to Eq. (7).
Since the time needed for the interface to propagate
through the supercooled region t̃0 � u�4 is large com-
pared to t̃ the fluctuations will have time to grow by a fac-
tor exp�u3�32� ¿ 1. The phases of C in different nuclei
117
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are uncorrelated. After coalescense, the random phases
produce topological defects such as vortices, according
to the Kibble-Zurek scenario [4]. Ultimately the super-
fluid nuclei in the supercooled region meet the propa-
gating N-S interface. This collision leads to a profound
perturbation of the interface if jCj in a nucleus has the
same order of magnitude as that at the N-S interface. Us-
ing (9), the condition for this instability is

u26 exp�u3�4� * 	N�0�Tcj
3
0
4�t0�tQ� for u ¿ 1 .

(10)

Defects in bulk superfluid.—The next step is to study
how the perturbations of the interface can enter the
bulk superfluid, i.e., to study how vortices or other
defects separate from the interface. We illustrate this
process with the one-dimensional model used above. The
conclusions are qualitatively the same as we can anticipate
for vortices near a moving N-S interface.

Defects in 1D should be modeled by a real C. Consider
a nucleus with a negative C�z� located on the right hand
side of the interface shown in Fig. 1. If the nucleus is
strong enough, it can create a kink in the order parameter
such that C�z� changes its sign and then continues as
negative valued; see Fig. 2. The stability of the kink on
the interface can be studied using Eq. (6), where 2z0 now
denotes the location of the kink. Assume first z0 ¿ 1 and
u ø 1. In this case, we can treat the second and last
terms as small perturbations. The unperturbed equation
has the solution C̃0�z̃� � 6 tanh�z̃�

p
2 �. Writing C̃ �

C̃0 1 C̃1 in Eq. (6), we find for the correction C̃1
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It has a solution only for certain z0. The solvability condi-
tion is found by multiplying Eq. (11) with dC̃0�dz̃ and in-
tegrating over the kink. The left hand side vanishes while
the right hand side implies z0 � 3�2u. This defines an
unstable equilibrium position for the kink. The numeri-
cal solution of Eq. (1) shows that, if the kink is located to
the right of 2z0, i.e., 23�2u , zkink, it will move with a
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FIG. 2. A kink in the order parameter near its critical location
z � 23�2u, where the whole profile moves with the same
velocity.
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velocity larger than u, and thus will be absorbed to the in-
terface. On the contrary, it will remain in the superfluid if
placed to the left, zkink , 23�2u, because its velocity is
smaller than u. We see that with increasing u, the critical
position approaches the interface and cannot be separated
from it any more when u � 1. It means that the defects
created under condition (10) in the supercooled region will
remain in the superfluid after the passage of the interface.

There is no supercooled region in a slow transition,
u ø 1. Nevertheless, defects can be created directly
within the growing bulk superfluid if the amplitude of
the fluctuations (8) is larger than the equilibrium order
parameter at the critical position of the kink:

u3 * 	N�0�Tcj
3
0
4�t0�tQ� for u ø 1 . (12)

Discussion.—Equations (10) and (12) constitute the
conditions for creating topological defects at an inhomo-
geneous phase transition. There is no universal critical
value of u; it depends on the fluctuations. The conditions
in fast (u ¿ 1) and slow (u ø 1) transitions approach
a common limit when u ! 1. This point corresponds
to tQ�t0 � 	N�0�Tcj

3
0
4 and l�j0 � 	N�0�Tcj

3
0
3 such

that the Zurek temperature TZ equals the Ginzburg tem-
perature TG where the fluctuations are comparable to the
mean-field order parameter, 1 2 TG�Tc � 	N�0�Tcj

3
0
22.

The parameter N�0�Tcj
3
0 � T2

F�T2
c is large in 3He.

The slow transition result (12) is, of course, on the
borderline of applicability of the GL theory. Neverthe-
less it shows qualitatively where the mean-field picture
of the moving interface breaks down and the defects can
be spontaneously created. Equation (12) can be com-
pared to experiments where different types of vortices of
3He-A were detected in a rotating container after a usual
cooldown (no nuclear reactions) [11]. The relative abun-
dance of two vortex types was found to depend on the
cooling rate. A changeover was seen at tQ � 3000 s.
Assuming that this value corresponds to the instability
condition (12), we can translate it to a critical u � 0.04
and l � 10 m. The experimental parameters are not well
known but they agree in order of magnitude with these
values.

If 	N�0�Tcj
3
0
4�t0�tQ� � �Tc 2 TZ�2��Tc 2 TG�2 is

large, the fluctuations are relatively weak and a large
supercooled region is required for creation of defects.
Equation (10) determines the condition where the cooling
can be regarded as a rapid quench for which the Kibble-
Zurek scenario of vortex formation works. Defects can
always be formed at sufficiently large u because the left
hand side of Eq. (10) grows exponentially with u. The
condition (10) ceases to be accurate for very high cooling
rates (tQ & t0	N�0�Tcj

3
0
2) where the superfluid front

gets outside of the validity region of the TDGL theory.
The condition (10) can be fulfilled for neutron triggered

phase transitions in 3He. Let us consider this case in
more detail. If the temperature profile is determined by
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heat conduction we have

T �r , t� � T0 1
E0

C
exp�2r2�4Dt�

�4pDt�3�2 , (13)

where T0 , Tc is the initial temperature. The specific
heat C and the diffusion coefficient D � yF��3 are
assumed constant, � � yFt being the quasiparticle mean
free path. We assume that the deposited energy E0 is
large enough to heat the volume of the order of �3 to
a temperature much higher than the critical temperature:
E0 ¿ �3C�Tc 2 T0�. The time

tmax �
1

4pD

"
E0

C�Tc 2 T0�

#2�3

¿ t (14)

is needed for the temperature at r � 0 to decrease down
to Tc. Equation (13) gives

l �
Tc

Tc 2 T0

s
2Dt

3 ln�tmax�t�
, (15)

tQ �
2Tct

3�Tc 2 T0�
	1 2 ln�tmax�t�
21 (16)

so that l is much longer than � and the cooling rate is
tQ * tmax. The temperature front defined by T �r0� �
Tc has the radius r2

0 � 6Dt ln�tmax�t�. The front starts
to move towards the center of the hot bubble with
the velocity y � l�tQ for t . tmax�e. The velocity
parameter u3 � 	Tc��Tc 2 T0�
 �t�tmax� ���j0�.

With the experimental values l � 1022 cm and j0 �
1026 1025 cm, we get �j0�l�1�3 � 1021. The front
velocity is roughly y � 1021yF . This estimate suggests
that u � 1, i.e., at the initial moment, the velocity of the
temperature front u is small and the superfluid domain
expands without delay into the cooled region. However,
when t approaches tmax, both the scale l and the front
velocity y � l�tQ increase according to Eqs. (15) and
(16). The velocity parameter u in Eq. (3) increases as
�tmax 2 t�22�3 and reaches umax � u0�tmax�t�2�3 before
the divergence is cut off at tmax 2 t � t. Under the
conditions of experiment [2], umax can be as high as
10 100. We conclude that the regime of cooling by
diffusion, at least in its final stage, corresponds to a rapid
quench: the value u * 4 needed to satisfy Eq. (10) is well
within the experimental range.

The instability inside a big supercooled volume cre-
ates roughly N0 � �4p�3� 	r0�j�T�
3 initial topological
defects (vortices) through the Kibble-Zurek mechanism.
The radius r0 should be taken at the moment when u
reaches its critical magnitude u * 4 such that the instabil-
ity occurs. We estimate N0 � ���j0�3u29�4. This num-
ber is large due to a big ratio ��j0 for 3He. For large
u, almost all of the initial vortices remain in the super-
fluid after the passage of the N-S interface. Many of the
small vortex rings shrink away, but some may grow in
the velocity field created by other vortices and by external
conditions (rotation of the vessel). Finally some vortices
are detected in the experiments of Ref. 2. However, it
is difficult to say definitely that the observed vortices are
created by the Kibble-Zurek mechanism: vortices might
also nucleate when the hot bubble distorts the externally
applied flow field and also nonthermal fluctuations may
contribute to vortex nucleation.

The possibility to realize the Kibble-Zurek scenario
via diffusive cooling depends crucially on the ratio of
the mean free path and the zero-temperature coherence
length: large u ¿ 1 can be achieved only for systems
with � ¿ j0. Such systems are, for example, superfluid
3He and clean superconductors. On the contrary, if � &

j0, as is the case in dirty superconductors, the velocity
parameter u & 1, and defects can be created only by
strong fluctuations under conditions of Eq. (12).
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