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Similarity Solutions for Capillary Pinch-Off in Fluids of Differing Viscosity
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Self-similar profiles associated with capillary instability of a fluid thread of viscosity lh in
surrounding fluid of viscosity h are obtained for 1

16 # l # 16 via a simplified numerical scheme.
Universal similarity scaling is preserved despite an asymptotically large velocity in the pinching neck
driven by nonlocal dynamics. The numerical results agree well with experimental measurements by
Cohen et al. [preceding Letter, Phys. Rev. Lett. 83, 1147 (1999)]. For all l, the self-similar profile is
asymmetric and conical far from the minimum. The steep cone slope increases monotonically with l;
the shallow cone slope is maximized around l � 1

4 .

PACS numbers: 47.20.Dr, 47.11.+ j, 68.10.–m
Resurgent interest in the classic fluid-mechanical prob-
lem of capillary pinch-off of a fluid thread, as recently re-
viewed in [1], has focused on analysis of the final stage of
pinch-off. Theoretical motivation arises from general in-
terest in the self-organization of nonlinear dynamics near
finite-time singularities, such as topological transitions,
and, in particular, with issues such as universality, scal-
ing, and uniqueness [2,3]. Further motivation arises from
diverse technological applications such as emulsification
and spray production. Provided molecular dimensions are
not reached first, viscous dissipation in the surrounding
fluid, however small initially, is asymptotically dominant
over inertia. Consequently, pinch-off in surrounding fluid
of any viscosity eventually enters a self-similar regime in
which the destabilizing capillary pressure is opposed by
internal and external viscous dissipation [4–6]. In con-
trast to the usual assumption that the thread profile and
flow field close to pinch-off are determined solely by lo-
cal dynamics, viscous pinch-off of a thread in surrounding
fluid involves an asymptotically large nonlocal contribu-
tion to the flow field in the pinching neck. Here we show
how to account for this nonlocal contribution and examine
the effect of the viscosity ratio on the self-similar pinch-
ing structure.

Consider a fluid thread of viscosity lh and surface ten-
sion g, pinching in surrounding fluid of viscosity h. Un-
der capillary pressure, nonaxisymmetric deformations can
be expected to decay more rapidly than the thread pinches;
thus only axisymmetric profiles need to be considered.
Let the thread have radius h�z, t�, where z is the axial coor-
dinate, and t is the time to pinch-off. To see how h and z
scale with t, note first that in Stokes flow the pressure and
velocity fields are both determined by equidimensional
Laplacian operators, and thus when only free-surface
boundaries are present there is no preferred direction.
This suggests that h � z as t ! 0. Balancing internal and
external viscous stresses against capillary pressure yields
the estimate u � g�h, which suggests that the velocity
is constant as t ! 0. Hence, h, z � t; the Reynolds
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number Re � ruh�h ~ t, where r is the density, which
is consistent with the neglect of inertia. In accordance
with the scaling arguments, we nondimensionalize all
velocities by g�h, lengths by an initial thread radius h0,
and time to rupture by hh0�g. Henceforth, all variables
are dimensionless.

The scaling arguments for h, z, and u were checked
for l � 1 pinch-off in Stokes-flow simulations which
tracked the evolution of an initially deformed drop by using
a boundary-integral method to solve for the interfacial
velocity at each time step [5]. The simulations showed
that h and z indeed decrease linearly with t and that the
self-similar profile is conical away from hmin. However, in
disagreement with the simple scaling arguments, the axial
velocity does not remain constant as t ! 0 but increases
slowly like j lntj. Yet the axial strain ≠zuz � 1�z � t21

as expected.
Lister and Stone [5] demonstrated that the retraction of

the far-field conical regions under capillary stresses creates
a tug-of-war between the two cones, with the winning cone
pulling the entire pinching neck toward itself, stretching
out the cone on the opposite end. Thus the dynamics as-
sociated with Stokes-flow pinch-off has a nonlocal velocity
component which, instead of being negligible as is usual
close to a finite-time singularity, is asymptotically domi-
nant over the locally driven contribution as t ! 0. For-
tunately, this asymptotically large nonlocal contribution to
the velocity in the neck is primarily a uniform advection,
which does not deform the interface and therefore does not
affect the local dynamics. The axial strain is dominantly
locally driven and does not depend on the cone slopes s1

and s2. Thus the pinching rate and the thread profile can
remain self-similar despite the asymptotically large nonlo-
cal contribution to the velocity.

We anticipate that the self-similar profiles for l fi 1
pinch-off exhibit analogous behavior; i.e., the far-field
cones contribute only uniform advection and the local pro-
files are insensitive to all other aspects of the nonlocal
structure. Thus it is possible to simulate evolution towards
© 1999 The American Physical Society 1151
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the self-similar structure in the pinching region by simply
prescribing the surface profile at intermediate to macro-
scopic length scales at each time step. To do so, it is ex-
pedient to work with a rescaled thread radius H�z � and
axial distance z ,

H�z � �
h�z, t�
hmin�t�

z �
z 2 z�hmin�

hmin�t�
, (1)

in effect changing to a self-similar reference frame which
fixes the minimum radius H � 1 at z � 0. The dynamics
are unaffected by the moving origin of z since inertia is
negligible.

In our simplified numerical scheme, only the central
pinching neck is time-evolved accurately. The thread
profile outside the neck is approximated beyond a large
distance by circular cones which are closed off at even
larger distances by spherical caps. The cones and caps are
prescribed such that the interfacial slope is continuous at
the points of attachment between the pinching neck, the
cones, and the caps. The cones were typically attached
onto the neck at Rc �

p
H2�zc� 1 z 2

c � 103 from the
origin, and the caps were attached onto the cones at Rs �
104, i.e., at fixed distances from hmin in similarity variables
but decreasing distances in the lab frame. This numerical
procedure is entirely equivalent to the assumption of a
far-field shape and velocity field required for solution of
similarity equations on a truncated domain using Newton’s
method. Provided the truncation is done sufficiently far
into the far-field, the errors are small.

With a closed interface specified as above, a standard
boundary-integral method [7] is used to calculate the
interfacial velocities. To resolve both the large-scale far-
field and the local structure of the pinching neck, grid
points were redistributed along the interface so that the
spacing between points remained inversely proportional to
the distance from the origin throughout a simulation. The
thread profile is updated by moving the grid points in the
pinching neck with the normal component of the calculated
interfacial velocity, and then attaching new cones and caps
according to the new, smaller value of hmin. The time step
was chosen such that hmin�t� decreased by about 1.5% at
each step.

The convergence of the scaled thread profile to a steady
self-similar shape was taken to be complete when parame-
ters, such as the cone slopes and the axial curvature at hmin,
varied by less than 1% per decade of further reduction in
hmin�t�. Self-similar profiles for different l were obtained
successively from the self-similar profile from the full
Stokes flow simulation for l � 1 [5]: this was used as the
initial condition for simplified simulations at l � 2 and 1

2 ;
the self-similar profiles at l � 2 and 1

2 were then used as
initial conditions for l � 4 and 1

4 , etc. At l ,
1
16 , errors

associated with the degenerate eigenmode in the singular
l � 0 limit became significant. At l . 16, the thread
profile evolution became oscillatory. For 1

16 # l # 16,
repeat calculations with different initial profiles or over
1152
a greater range of reduction in hmin yielded essentially
the same results. Repeat calculations for l � 1

16 , 16 with
double the density of points and an appropriately reduced
time step, and with the same density of points and halved
time step, gave differences in results of 0.5% 3%. Tests
with Rc � 104 and Rs � 105 showed that the errors due
to truncation were typically less than 1%. The calculated
self-similar profiles are thus thought to have this sort of
accuracy.

We now turn to a discussion of the results. Figure 1
presents self-similar profiles for l � 1

16 , 1
4 , 1, 4, and 16

in the pinching neck. For all l, the profile is asymmetric
and quickly becomes conical away from hmin. The profiles
vary nonmonotonically with l, as discussed below. Fig-
ures 2 and 3 present the steep cone slope s1, shallow cone
slope s2, and axial curvature k2�z � � H 00�

p
1 1 H 02 as

a function of l. The calculated slopes s1 and s2 are in
good agreement with the experimental measurements by
Cohen et al. [8], given experimental uncertainties, except
for s1 at l ø 1.

Both the calculated s2 and k2�0� have a maximum
around l � 1

4 and the calculated s1, though always in-
creasing with l, appears to change its l dependence around
l � 1

4 as well. The shift to longer length scales seen in
the behavior of s2 and k2�0� at large and small l paral-
lels that observed in the linear stability of a viscous fluid
cylinder in another viscous fluid [9], for which the most
unstable wave number has a maximum at l � 0.28. Esti-
mation of internal and external fluid stresses suggests that
long-wavelength motions are generally preferred by such
free-surface Stokes flows at extreme viscosity ratios. The
shift of the pinching dynamics to longer length scales at
large and small l can also be seen in profiles of k2�z � for
l � 1

16 , 1
4 , 1, 4, and 16 (Fig. 3B): for l ø 1, this shift

is accomplished primarily by a broadening of the peak in
k2; for l ¿ 1, it is accomplished by shifting away from
hmin of the peak marking the transition to the start of the
steep cone.
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FIG. 1. Self-similar profiles for l � 1
16 (dotted line), 1

4 (solid
line), 1 (dashed line), 4 (long-dashed line), and 16 (dot-
dashed line).
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FIG. 2. Calculated steep cone slope s1 (filled circles) and
shallow cone slope s2 (filled squares) compared with the
experimental measurements by Cohen et al. [8] (open circles
and squares). The long-dashed curve corresponds to l21, where
l is the linearly most unstable wavelength for a cylinder of
viscous fluid immersed in another fluid [9].

The suggested l21�2 scaling of s2 and l21 scaling
of k2�0� when l ¿ 1 can be rationalized by assuming
long-wave dynamics and balancing the internal extensional
stress l≠z�h2≠zuz� with external shear stresses h≠ruz , as
discussed in [5]. In hindsight, it is clear why attempts
to capture pinch-off dynamics at large l with a long-
wave model was not successful, since the steep cone slope,
somewhat surprisingly, becomes large at large l. The
observed trends at large l indicate that the symmetric
similarity solution for capillary pinching with zero exterior
viscosity [10], obtained by assuming long-wave dynamics,
does not constitute the proper limiting solution for l !
`, probably due to the fact that the external viscous
dissipation remains comparable to the internal dissipation
even as l ! `.

An examination of the flow fields presented in Figs. 4
and 5 yields some insights into the dynamics which give
rise to the observed pinch-off profiles. To illustrate the
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FIG. 3. Axial curvature k2�z � � H 00�
p

1 1 H 02. (A) k2�0�
as a function of l; (B) profiles for l � 1

16 (dotted line), 1
4

(solid line), 1 (dashed line), 4 (long-dashed line), and 16 (dot-
dashed line).
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FIG. 4. Flow fields for l � 8 (top) and l � 1
8 (bottom) in

the reference frame with uz�4, 6� � 0. Velocities for l � 8 are
nondimensionalized by lh instead of h. All velocity vectors
are magnified by 4.

deforming flow in the neck most clearly, in Fig. 4 we have
adopted a reference frame translating axially with roughly
half of the axial velocity of hmin. (Recall that the large
nonlocal component of the axial flow is uniform and non-
deforming.) Figure 4 depicts flow fields for l � 1

8 and
l � 8. The l � 8 velocity vectors have been nondimen-
sionalized by lh instead of h since the larger viscosity
presents the dominant resistance. The overall flow pat-
terns are then similar: there is an almost spatially uniform
radial flow towards the thread balanced by axial advection
away from hmin close to and within the thread. As might
be anticipated, there is a significant difference in the axial
velocity profile in the shallow cone: the l � 1

8 profile
is nearly parabolic in cross section; the l � 8 profile is
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FIG. 5. The axial strain on the thread centerline for l � 1
8

(dot-dashed line), 1 (solid line), and 8 (dashed line). Strains
for l � 8 are nondimensionalized by lh instead of h.
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nearly uniform. The flow in the retracting steep cone is
more complicated.

In addition to the uniform axial velocity towards the
steep cone driven nonlocally by the far-field conical pro-
files, the thread surface is rolling: the local flow pushes the
steep cone downward and tilts the shallow cone upward,
resulting in an axial shift of hmin towards the steep cone.
The deforming flow also stretches out the shallow cone and
compresses the steep cone, as can be seen most easily in a
plot of the axial strain along the thread centerline (Fig. 5).

Figure 6 presents a comparison of the calculated self-
similar pinching rates dhmin�dt with experimental mea-
surements [8]. As noted by [8], the self-similar pinching
rate is well approximated for 0.1 , l , 4 by the maxi-
mum growth rate from linear stability analysis of a viscous
cylinder in another viscous fluid [9]. This is consistent
with Fig. 2, in which, over the same range of l, s2 matches
l21 almost exactly, where l is the linearly most unstable
wavelength.

It is tempting to define ls � 1�s2 as the characteristic
distance over which the shallow cone looks like a cylinder
on the O�hmin� scale and, ignoring the steep cone, then
argue that when ls � l the pinching dynamics in the self-
similar reference frame is analogous to the initial instability
of a perturbed cylinder. However, this would not explain
why the agreement fails at large and small viscosity
ratios, when s2 is smaller and therefore looks even more
cylindrical on the O�hmin� length scale. Moreover, it
would be equally sensible to define lk � k21�2, where k

is either the maximum axial curvature or k2�0�. In both
cases, lk ø l suggesting that the region about hmin does
not look particularly like a cylinder. As dhmin�dt is more
likely to be determined locally than slaved to the thinning
of the shallow cone, lk appears to be a more relevant length
scale than ls, in which case the close agreement between
linear stability results and self-similar pinching would be
simply fortuitous. A more quantitative examination of the
analogy between the pinching thread and linear stability of
a cylinder would clearly be helpful.

In conclusion, the self-similar structure associated with
capillary pinch-off of a fluid thread in surrounding fluid is
embedded in an asymptotically large advection induced by
structure on length scales much larger than the character-
istic O�hmin� local length scale and much smaller than the
macroscopic drop size. However, as the nonlocal contri-
bution to the velocity field in the pinching region is nearly
uniform, the self-similarity of the pinching dynamics is
preserved. Results for thread pinch-off at l � 1

16 to 16
are presented and shown to be consistent with experimen-
tal measurements [8]. At all l, the self-similar profile
is asymmetric and conical away from hmin. For l ¿ 1,
which corresponds to the pinching of a syrup thread in air,
the self-similar profile has a steep cone on one side of hmin
1154
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FIG. 6. Comparison of calculated dhmin�dt (filled diamonds)
with experimental measurements (open diamonds). The dashed
curve corresponds to the maximum growth rate predicted by
linear stability analysis of a cylinder of viscous fluid in viscous
surroundings [9].

and a shallow cone on the other. For l ø 1, which corre-
sponds to the pinching of an elongated air bubble in syrup,
the self-similar profile has shallow cones on both sides of
hmin. The observed l dependence, in particular the flat-
tening of the shallow cone at large l and the flattening of
both cones at small l, is partially explained by analogy
with linear stability results, but the steepening of the steep
cone at large l is a surprise.
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