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Spectral Statistics and Dynamical Localization: Sharp Transition
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We consider a Sinai billiard where the usual hard disk scatterer is replaced by a repulsive potential
with V �r� � lr2a close to the origin. Using periodic orbit theory and numerical evidence we show
that its spectral statistics tends to Poisson statistics for large energies when a , 2 and to Wigner-
Dyson statistics when a . 2, while for a � 2 it is independent of energy, but depends on l. We
apply the approach of Altshuler and Levitov [Phys. Rep. 288, 487 (1997)] to show that the transition
in the spectral statistics is accompanied by a dynamical localization-delocalization transition. This
behavior is reminiscent of a metal-insulator transition in disordered electronic systems.

PACS numbers: 05.45.Mt, 03.65.Sq, 71.30.+h
The statistical distribution of quantum mechanical en-
ergy eigenvalues is of fundamental interest in diverse
areas of physics such as condensed matter, atomic, and
nuclear physics [1]. In the strict quasiclassical limit,
where the de Broglie wavelength is much smaller than
all other length scales, the theory of quantum chaos re-
lates the spectral statistics of a quantum system to the
dynamics of its classical counterpart. While chaotic clas-
sical dynamics leads to Wigner-Dyson random matrix sta-
tistics [2], integrable dynamics generically gives rise to
Poisson statistics (uncorrelated eigenvalues) [3]. There
is overwhelming evidence, both experimental and numeri-
cal, for these results [4]. The spectral statistics of systems
with mixed classical dynamics is expected to be described
by superposing level sequences with Poisson and random
matrix statistics, where the respective mean level spacing
is determined from the size of the corresponding phase
space volume with regular or chaotic dynamics [5].

However, when the de Broglie wavelength is not the
smallest length scale in the system, the spectral statis-
tics is not solely determined by the classical dynamics.
For example, the classical motion of an electron in a
(three-dimensional) disordered system, such as a metal
with substantial impurity scattering, can be regarded as
completely chaotic. Nevertheless, upon variation of the
disorder strength at a fixed energy (Fermi energy), the
spectral statistics undergoes a sharp transition from
Wigner-Dyson to Poisson statistics [6]. Note that at
the critical point the de Broglie wavelength is of the
same order of magnitude as the elastic mean free path,
a classical length scale. The transition in the spectral
statistics is accompanied by a transition from extended to
localized eigenstates (Anderson metal-insulator transition)
[7]. In the case of disordered systems, one can therefore
attribute the deviation of the spectral statistics from what
one would expect on the basis of the classical dynamics
to the quantum phenomenon of localization.

A similar effect on the spectral statistics may be caused
by dynamical localization [8,9]. Dynamical localization
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occurs, for example, in a circular billiard with a rough
boundary, where in a certain range of parameters the
quantum eigenstates are localized in angular momentum
space despite that the classically chaotic dynamics leads
to diffusive spreading of an initial angular momentum dis-
tribution [10]. As a function of boundary roughness there
is a crossover between localized and extended eigenstates,
which takes place when the de Broglie wavelength ldB is
of the same order of magnitude as a classical length scale
set by the roughness ��dR�du�2��R0, where R�u� defines
the rough circle in polar coordinates, R0 � �R�, and the
average is over the angle [10]. At the same time the
level statistics changes smoothly from Poisson to Wigner-
Dyson statistics [10,11].

It is the purpose of the present article to show that a
dynamical (nonrandom) system may also display a sharp
transition in the spectral statistics. This is accompanied
by a dynamical localization-delocalization transition of
the eigenstates and is reminiscent of a metal-insulator
transition in disordered systems. We thereby extend
the list of analogies between dynamical and disordered
systems [7].

We consider a generalization of the well-known Sinai
billiard (SB). Sinai proved that the free motion of a
classical particle being specularly reflected from a disk
of radius R inside a square with periodic boundary
conditions is completely chaotic [12]. We modify the SB
by replacing the disk with the scattering potential
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where a and l are positive parameters (see also Fig. 1).
Note that in the limit a °! ` the SB is recovered. In
a chaotic billiard, the replacement of a hard wall by a
soft potential barrier generically leads to the formation of
stable islands [13]; however, in the present case these are
hardly visible in a Poincaré surface of section and are not
relevant for the effect studied here.
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FIG. 1. Potential of the generalized Sinai billiard.

A similar system was considered by Altshuler and Levi-
tov [14]. They focused on the properties of the eigenstates
and proved the occurrence of a dynamical localization-
delocalization transition. In contrast, the emphasis in the
present work is on a transition in the level statistics and on
its semiclassical origin. The transition occurs as a func-
tion of a at a � 2, irrespective of the value of l. It
is a sharp transition in the limit of large energy. Using
periodic orbit theory we find that it is caused by a com-
petition between regular (“bouncing ball”-type [15]) and
chaotic orbits. In the second part of this article we show
that the approach of Altshuler and Levitov may be applied
also to the present case. We thereby demonstrate that the
transition in the spectral statistics is accompanied by a dy-
namical delocalization transition of the eigenfunctions.

For large energies, the qualitative quantum dynamics
of the generalized Sinai billiard (GSB) is determined by
the interplay of three length scales, (i) the de Broglie
wavelength ldB, (ii) the radius rc � �E�l 1 1�21�aR of
the classically forbidden area, and (iii) a typical length l̃
of an orbit before its direction is randomized by scattering
from the potential.

When a . 2 the potential (1) effectively acts as a
hard wall, since the radial wave function then vanishes
like exp�2cr12a�2� with c � 2

p
lRa��a 2 2� near the

origin, i.e., faster than any power. To estimate the
behavior of the spectral statistics, we approximate
the potential (1) by a hard disk with the energy dependent
radius rc. According to the semiclassical theory [16], the
structure in the spectrum on the scale dE is determined
by periodic orbits of length l � hy�dE, where h denotes
Planck’s constant and y the velocity of the particle.
For l . l̃ the chaotic orbits dominate and the spectral
statistics will be random-matrix-like, while for l , l̃ the
regular orbits dominate, leading to Poisson-like statistics.
With ´ � dE�D measuring the energy on the scale of
the mean level spacing D, we expect random-matrix-like
behavior on energy scales ´ , ˜́ and Poisson-like behav-
ior for ´ . ˜́ , where ˜́ � A�ldB l̃ and A denotes the area
of the billiard. Now l̃ can be estimated by l̃ � A�rc,
so that we find ˜́ � rc�ldB. This ratio scales with
energy as rc�ldB ~ E�a22��2a . Consequently, for a , 2
and increasing energy, ˜́ tends to zero, while ˜́ °! `
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for a . 2. On this basis we expect a sharp transition
between Poisson and random matrix statistics at a � 2
in the limit of large energy E. Intuitively, the classically
forbidden area becomes invisible to quantum mechanics
for a , 2, while for a . 2 it becomes more and more
sizable.

To see this explicitly, we apply Berry’s periodic orbit
theory of bilinear spectral statistics [16] to the SB with
energy dependent disk radius rc. The SB has two types of
periodic orbits: those that never strike the disk and those
that do. The former are marginally stable, occur in one-
parameter families, and will be referred to as regular orbits,
while the latter are unstable, isolated, and will be referred
to as chaotic orbits. In the following, we determine the
contribution of the regular orbits to the spectral form factor
K�t�. Denoting the unfolded density of states by d�´�, the
form factor is related to the two-point correlation function
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by Fourier transformation, K�t� �
R

`
2` ds e2pistR�s�.

One way to determine the contribution of the regular or-
bits to the density of states is to suitably modify the trace
formula for the empty billiard. To avoid degeneracies in
the spectrum, we use a rectangular instead of a quadratic
billiard (sidelengths a and b) and quasiperiodic bound-
ary conditions for the wave function, i.e., c�x 1 a, y� �
eifx c�x, y� and analogously for the y direction [17]. The
eigenvalues of the rectangle without the disk are Ejk �
�2pj 1 fx�2�a2 1 �2pk 1 fy�2�b2 (here and below
h̄2�2m � 1). Applying the Poisson summation formula
to the density of states of the empty rectangle and replac-
ing the resulting Bessel function by its asymptotic form
leads to a representation as a sum over periodic orbit fam-
ilies. Each family is specified by two integers, m and n
(positive or negative), denoting the number of traversals
across the billiard in the x and y direction, respectively.
Now including the disk obstructs the path of the orbits
that violate the condition 2 lmnrc�E� , A, where A � ab
and lmn � ��ma�2 1 �nb�2�1�2 denotes the length of the
orbits. The remaining families have to be weighted by
the area they cover. The oscillatory part of the regular
contribution to the unfolded density of states is then

d̃reg�´� �
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where the first sum is over all primitive orbits and the
second over repetitions. In Eq. (3) we have introduced
the actions Smn � lmn

p
E 1 mfx 1 nfy and the orbit

selection function fmn�E� � �1 2 2rc�E� lmn�A� u���A 2

2rc�E� lmn���, and set the mean level density to its large
energy limit, so that ´ � AE�4p . This formula is a
simple generalization of the expression for the usual
SB given in Ref. [18]. Substituting Eq. (3) into (2) and
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retaining only the diagonal terms in the double sum over
periodic orbits (the diagonal approximation is justified by
the energy average and known to be exact for regular
systems [16]) yields the contribution of the regular orbits
to the form factor

Kreg�t� �
X

�m,n�0
f2

mn�E�
X̀
j�1

d�t 2 j lmn�A
p

E�
2pj lmn

p
E
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This expression may be evaluated approximately by
replacing the sums over primitive orbits and repetitions by
a single sum over all orbits �m, n�. In the large E limit,

Kreg�t� � �1 2 cE�a22��2at�2 u�1 2 cE�a22��2at� ,

(5)

with c � 2Rl1�a . Equation (5) shows that the contribu-
tion of the regular orbits to the form factor tends to zero
for a . 2, while for a , 2 the Poisson limit K�t� � 1
is attained. The contribution of the chaotic orbits assures
that for a . 2 GOE statistics of random matrix theory is
reached. To see this explicitly would require going be-
yond the diagonal approximation.

Next, we verify the above theoretical prediction of a
transition in the spectral statistics of the GSB numerically.
For a , 2, the eigenvalues of the GSB may be calculated
by diagonalizing the Hamiltonian in the eigenbasis of the
empty billiard. However, for a $ 2 the matrix elements
diverge and it is natural to work in the eigenbasis of
the 1�ra-potential [19]. In this regime we chose to
apply the Korringa-Kohn-Rostoker method, as described
in Ref. [18] for the case of the ordinary SB. The
difference with respect to Ref. [18] is that in the present
case the scattering phase shifts of the potential have to
be determined by solving the radial Schrödinger equation
numerically, while they can be expressed in terms of
Bessel functions for the usual SB. This makes the present
case computationally more demanding.

Figure 2 shows the cumulative spacing distribution
N�s� �

Rs
0 dx P�x�, with P�s� denoting the nearest-

neighbor spacing distribution, for a � 1 and 4 (we
used l � 8 for the former, l � 0.01 for the latter,
and in both cases R � 1 with a billiard of area 4p).
Each curve is displayed with two reference curves,
N�s� � 1 2 e2s for Poisson statistics and the Wigner
surmise N�s� � 1 2 exp�2p

4 s2� for the GOE. We
observe a clear movement of N�s� towards the Poisson
curve with increasing energy for a � 1 and towards the
Wigner surmise for a � 4. Considering the relatively
weak energy dependence of the spectral statistics, see
Eq. (5), the limiting distributions are not expected to be
reached within the available spectra. We verified that for
a � 2 the spectral statistics is independent of energy in
accordance with Eq. (5).

We turn to the properties of the eigenfunctions of
the GSB. To keep the discussion general, we consider
the GSB in d $ 2 dimensions. Following Ref. [14]
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FIG. 2. Cumulative nearest-neighbor spacing distribution for
the generalized Sinai billiard. The energy levels that were
used are indicated below the curves (for a � 4 an average
over three different aspect ratios a�b at constant area ab � 4p
was taken). With increasing energy a clear movement towards
Poisson statistics for a � 1 and towards GOE statistics for
a � 4 is visible.

we map the Schrödinger equation for the GSB on a
localization problem. Applying Levitov’s criterion of a
diverging number of resonances [20] we then show that
a � 2 corresponds to a critical point associated with a
delocalization transition.

Using periodic boundary conditions and a billiard of unit
volume, the Schrödinger equation in momentum represen-
tation takes the form

Ek ck 1
X

k0fik
Vk2k0ck0 � E ck , (6)

where k denotes a site in the reciprocal lattice, ck the
Fourier coefficients of the wave function, Vk those of
the potential, and Ek � k2 1 V0. Equation (6) may be
interpreted as the Schrödinger equation of a particle on a
lattice with on-site energies Ek and hopping amplitudes
Vk. Considering an eigenfunction with energy E, one
finds [14] that its Fourier coefficients are nonvanishing
only in an energy shell E 2 dE , Ek , E 1 dE, where
dE is proportional to l, which is assumed to be much
smaller than E. Within this quasi-(d 2 1)-dimensional
shell, the on-site energies Ek are uniformly distributed
quasirandom numbers. Since Vk ~ 1�kd2a for large k,
1141



VOLUME 83, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 9 AUGUST 1999
one may interpret Eq. (6) as an Anderson model with
long-range power-law hopping within the energy shell
[14]. A delocalization transition occurs when the mean
number of resonances per site diverges [20]. A resonance
is defined as a pair of sites k,k0 that fulfill the condition
jVk2k0 j . jEk 2 Ek0 j. If two sites are in resonance, the
eigenstates of the corresponding two by two eigenvalue
problem have amplitudes ck,ck0 that are comparable in
magnitude. Informally, they can then be considered as
“linked” and an eigenstate can spread along this link. If the
mean number of resonances per site is infinite, there can
be no localization, irrespective of the hopping strength.

Noting that for Vk2k0 ø dE [21] the probability that
the sites k, k0 are in resonance is simply jVk2k0 j�dE, the
mean number of resonances N with a fixed site k can
be estimated by summing the probability over the energy
shell,

N �
1

dE

X
k0 [dE

jVk2k0 j �
1
p

E

Z p
E

0
dk kd22 Vk .

(7)

The sum is estimated by an integration over a flat region
of radius

p
E (we used Dk � dE�2

p
E for the width of

the energy shell and dropped an energy independent fac-
tor). Substituting the asymptotic form of Vk for large k
into Eq. (7) we find that the mean number of resonances
per site diverges in the limit of large energy when a . 2,
independent of the dimension. In the case that was consid-
ered by Altshuler and Levitov [14] the same consideration
leads to a critical a of one. For a below the critical value,
the eigenstates are localized with a power-law tail due to
direct hopping, independent of l when d # 3 (because the
effective lattice, i.e., the energy shell, is two-dimensional
for d � 3), and also for small l when d . 3.

In summary, we have shown that the GSB displays a
sharp transition in the spectral statistics, which is caused
by a competition between chaotic and regular orbits. It
is accompanied by a dynamical delocalization transition
of the eigenstates. The investigation helps to clarify the
relation between disordered systems and quantum chaos.
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