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Two-loop QED corrections to the decay rate of parapositronium�p-Ps� into two photons are
presented. We findG�p-Ps! gg� � 7989.50�2� ms21. The nonlogarithmicO �a2� corrections turn
out to be small, contrary to some earlier estimates. We speculate that the so-called “orthopositro
lifetime puzzle” will not likely be solved by large QED corrections.
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Positronium (Ps), the simplest known atom, is an ide
system to test quantum electrodynamics (QED) of bou
states. The spectrum and lifetimes of Ps states are,
least in principle, calculable within QED with very high
accuracy. Hadronic effects, which in other atoms lim
the attainable theoretical precision, are suppressed by
small ratio of electron and hadron masses.

The lifetimes of the triplet and singlet ground states (re
spectively, orthopositronium and parapositronium) hav
been subjected to very precise theoretical and experim
tal studies. Theoretical predictions for parapositroniu
�p-Ps� and orthopositronium�o-Ps� decay rates into 2 and
3 photons, respectively, can be expressed as expansion
the fine structure constanta:
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are the lowest order decay widths of thep-Ps ando-Ps,
respectively, and the ellipses in Eqs. (1) and (2) deno
unknown higher order terms which we will neglect in ou
analysis. Corrections ofO �a� were calculated in [1] for
p-Ps. Foro-Ps the most accurate result was obtained
[2], where references to earlier works can be found. T
logarithmic two-loop correction was found in [3] foro-Ps
and in [4] for p-Ps. The leading logarithmic correction
at three loops was computed in [5]. Some partial resu
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on theO �a2� corrections for bothp-Ps ando-Ps can be
found in [2,6–9], but complete values ofBp,o have not
been obtained so far.

Using Eqs. (1)–(3), one obtains the following the
retical predictions for the lifetimes
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How do these predictions compare with experimen
For p-Ps the most recent result [10],

G
exp
p-Ps � 7990.9�1.7� ms21, (6)

is in good agreement with (4) ifBp is not too large.
For orthopositronium the situation is not clear. Prec

experiments of the Ann Arbor group [11,12] found

G
exp
o-Ps�gas measurement� � 7.0514�14� ms21,

G
exp
o-Ps�vacuum measurement� � 7.0482�16� ms21, (7)

which, for Bo � 0, differ from (5) by 9.4s and 6.3s,
respectively. This apparent disagreement of experim
with theory has been known as the “orthopositroniu
lifetime puzzle.” It should, however, be noted, that
more recent Tokyo result [13],

G
exp
o-Ps�SiO2 measurement� � 7.0398�29� ms21, (8)

agrees with the theory prediction ifBo is not too large.
Both Tokyo and Ann Arbor groups are working t
improve their results.

Should future experimental efforts confirm the Ann A
bor results (7), in disagreement with the QED predicti
© 1999 The American Physical Society 1135
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(5), the orthopositronium lifetime puzzle could be solved
if Bo turns out to be unusually large, e.g., �250 for the
vacuum measurement. Alternatively, one might speculate
that some “new physics” effects such as o-Ps decays in-
volving axions, millicharged particles, etc., cause the ex-
cess of the measured decay rate over the QED predictions.
Some of those exotic scenarios seem to have already been
excluded by dedicated experimental studies. (For a re-
view and references to original papers, see, e.g., [14].)

It was anticipated [10] that a full two-loop calculation
might first be done for p-Ps. In fact, the relative theoretical
simplicity of p-Ps motivated the most recent lifetime
measurement [10]. In this paper we present a complete
calculation of Bp . Our result permits the rigorous test of
bound state QED envisioned in [10]. We find that the two-
loop nonlogarithmic term in (1) has a small coefficient,

Bp � 1.73�30� , (9)

and the theoretical prediction for the p-Ps lifetime becomes

G
theory
p-Ps � 7989.50�2� ms21. (10)

Below we briefly discuss some details of our calculation.
The decay width of p-Ps ! 2g can be written as
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where P is the four-momentum of the p-Ps, f�p� is its
wave function, and A�l, p� is the annihilation amplitude
of an e1e2 pair into a pair of photons with polariza-
tion �l�.

In the noncovariant perturbation theory the on-shell
amplitude of the process e1e2 ! gg reads

A �
8paEp

E2
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Here Ep �
p

m2 1 p2; p and k are electron and photon
three-momenta in the p-Ps rest frame; w and y are
bispinors of, respectively, electron and positron at rest,
and L6�p� are the projectors on the positive and negative
energy states,
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To leading order one can neglect the small momenta
p � ma compared to m and jkj � m. One finds the
following leading order amplitude:

ALO � 2
4pa

m2 y1� �ae2� � �ak� � �ae1�w , (14)
1136
and the lowest order decay width

GLO �
4pa2

m2 jc�0�j2 �
ma5

2
. (15)

Higher order corrections to GLO will be calculated us-
ing nonrelativistic QED (NRQED) [15] with dimensional
regularization [16]. We divide up the corrections into
three parts:

Bp � Bsquared
p 1 Bhard

p 1 Bsoft
p , (16)

where B
squared
p is the contribution of the one-loop ampli-

tude squared and Bhard, soft
p are the hard and soft contri-

butions. The hard corrections arise as contributions of
virtual photon momenta k � m. Their effects are de-
scribed by adding operators containing d�r� to the non-
relativistic Hamiltonian. The technical challenge is to
compute the Wilson coefficients of those operators. For-
tunately those coefficients can be obtained using any con-
venient external states. In particular, one can compute
them for the electron and positron at rest. It is impor-
tant to employ dimensional regularization, so that one
avoids the necessity of subtracting the Coulomb singu-
larities from box graphs. On the other hand, the soft
contributions come from the region of virtual photon mo-
menta of the order of k � ma and are sensitive to bound
state dynamics. The actual calculation is briefly described
below.

The square of the one-loop amplitude is easily obtained
from the one-loop result:
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Bhard
p consists of three types of contributions: vacuum

polarization insertions in the photon propagators, light-
by-light scattering diagrams, and two-photon corrections
to the annihilation amplitude,

Bhard
p � Bhard

p �VP� 1 Bhard
p �LL� 1 Bhard

p �gg� . (18)

Vacuum polarization insertions into the one-loop graphs
[an example is shown in Fig. 1(a)] were computed in
[17,18],

Bhard
p �VP� � 0.4468�3� . (19)

Light-by-light scattering contributions [for examples, see
Figs. 1(b) and 1(c)] are more difficult to compute because
of their imaginary parts which make numerical integration
unstable. We computed them analytically, by formally
assigning a large mass M to the internal fermions and
expanding in x � m�M. The resulting series converge
so well that several terms are sufficient to find the result
at x � 1:

Bhard
p �LL� � 22.10�12� . (20)
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FIG. 1. Examples of two-loop hard corrections to p-Ps decay
into two photons.

The most difficult class of effects comes from the two-
photon corrections, examples of which are shown in
Figs. 1(d)–1(f). We proceed in the following way: com-
bine propagators using Feynman parameters; perform mo-
mentum integrations analytically; extract ultraviolet (UV)
and infrared (IR) divergent pieces; integrate numerically
over typically five (in some cases six) Feynman parame-
ters in the finite expressions.

Extraction of UV divergences is relatively simple—
they show up, roughly speaking, as singularities in the
overall factors rather than as divergent integrals over
Feynman parameters.

Calculation of IR divergent diagrams is more demand-
ing. For each such diagram we add and subtract a simpler
diagram so that the sum is IR finite, and the subtraction
can be calculated analytically. As an example, let us con-
sider the diagram shown in Fig. 1(d). The IR singular-
ity in this diagram appears when momenta of the virtual
photons are small. To suppress the contribution of this
region we rewrite the propagator of the t-channel electron
by subtracting its value and a suitable number of deriva-
tives when both virtual photon momenta are zero. This
difference leads to an infrared finite expression which can
be computed numerically. To compensate this subtraction
we must add the same diagram with the t-channel propa-
gator replaced by a constant, 1��2m2�. Such diagrams
were studied in [19] and can be computed analytically.

Similar tricks are used to compute all other IR divergent
diagrams, although the subtraction procedure is more
tedious in the case of diagrams with stronger singularities,
like the planar box in Fig. 1(e).

Adding all two-photon diagrams and summing up
numerical errors of individual diagrams in quadrature we
find

Bhard
p �gg� � 2

p2

2e
1 2p2 lnm 2 42.23�27� . (21)
The logarithm of the dimension-full parameter m arises
from the expansion of the overall factor m22e and
vanishes in all physically meaningful expressions.

The sum of Eqs. (19)–(21) gives the total hard correc-
tion

Bhard
p � 2

p2

2e
1 2p2 lnm 2 43.88�30� . (22)

To calculate the soft scale contributions, one should
account for the relativistic corrections to the annihilation
amplitude (AA) e1e2 ! gg and to the positronium
wave function (WF):

Bsoft
p � Bsoft

p �AA� 1 Bsoft
p �WF� . (23)

For the annihilation amplitude correction, one expands
the on-shell amplitude (12) to relative order O �p2�m2�.
Although the resulting integral is linearly divergent, using
dimensional regularization one finds a finite result (see
[20] for a discussion of this effect):

Bsoft
p �AA� �

p2

3
. (24)

Relativistic corrections to the positronium wave func-
tion can be computed using the Breit Hamiltonian. Since
we regularize all divergences dimensionally, we need the
Breit Hamiltonian in d dimensions derived in [20]. Its
projection on the S states can be found in Eq. (39) of that
paper. Performing calculations similar to those described
after that equation, we find the wave function correction
to the decay rate:

Bsoft
p �WF� 1 2p2 ln

1
a

�
p2

2e
1 2p2 ln

1
ma

1
33p2

8
,

(25)

where on the left-hand side we have separated the
logarithm, to be consistent with the division of corrections
introduced in Eq. (1).

The sum of the corrections to the annihilation amplitude
(24) and to the wave function (25) gives the final result for
the soft contributions,

Bsoft
p �

p2

2e
2 2p2 lnm 1

107p2

24
. (26)

We note that this partial result cannot be directly com-
pared to the soft corrections found in a previous study
[7] since a different regularization scheme was employed
there.

The final result in Eq. (9), Bp � 1.73�30�, is obtained
as a sum of the square of the one-loop corrections (17),
and the genuine two-loop hard (22) and soft (26) contri-
butions. We can now present a theoretical prediction for
1137
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the two-photon width of parapositronium with the two-
loop accuracy:
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Our final result (27) agrees well within 1s with the most
recent experimental result, Eq. (6).

p-Ps can also decay into 4 or more photons. Those
effects increase the p-Ps width by about 0.01 ms21 (see
[21], and references therein).

The coefficient of the nonlogarithmic �a�p�2 term in
Eq. (27) is rather small, due to an almost complete cancel-
lation between the soft and hard corrections. As we have
already mentioned, only the sum of the two is regulari-
zation scheme independent and hence unambiguous. For
this reason, it is likely that the cancellation between soft
and hard pieces is not accidental. Scheme and gauge in-
dependent corrections—for example, Eqs. (17), (19), and
(20)—seem to indicate that “natural scale” of the O �a2�
corrections is �several units� 3 �a�p�2.

The result of our calculation, Bp � 1.73�30�, is much
smaller than the estimate 40 6 20 given in [7]. This
discrepancy can be traced back to the discussion after
Eq. (26) in the first paper of [7]. It seems that the impact
of short-distance (hard) corrections was underestimated
there. As the division of contributions into soft and hard
pieces is regularization scheme dependent, it is clearly
dangerous to draw conclusions about the complete result
on the basis of only one of those parts.

Having for the first time a complete two-loop cor-
rection to a QED bound state decay, one is tempted to
speculate about the size of such corrections to the or-
thopositronium lifetime. Although nothing can be said
rigorously, one could argue that most known second order
effects have similar order of magnitude for o-Ps and p-Ps.
A possible enhancement may be due to the larger (by about
a factor of three) number of Feynman diagrams contribut-
ing to o-Ps decay compared to p-Ps decay [this is already
seen in the magnitudes of the O �a� corrections]. Un-
less this enhancement is dramatic for the complete O �a2�
corrections to the decay rates, the theoretical prediction
for the o-Ps lifetime will remain distant from the experi-
mental results in Eq. (7). It is therefore extremely impor-
tant that the three-photon decay of o-Ps be further studied
experimentally.
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