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Sequence Randomness and Polymer Collapse Transitions

Pietro Monari,1 Attilio L. Stella,1,2 Carlo Vanderzande,3 and Enzo Orlandini1
1INFM-Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy

2The Abdus Salam ICTP, P.O. Box 586, 34100 Trieste, Italy
and Sezione INFN, Università di Padova, 35100 Padova, Italy

3Departement WNI, Limburgs Universitair Centrum, 3590 Diepenbeek, Belgium
(Received 19 January 1999)

Chain disorder with frustration can modify the universality class of scaling at the theta transition of
heteropolymers. This is shown for a model with random two-body potentials in 2D on the basis of
exact enumeration and accurate Monte Carlo results. When the average fraction of repulsive monomer-
monomer interactions grows beyond a certain finite threshold, the temperature below which disorder
becomes relevant coincides with the theta one, and scaling exponents definitely start deviating from
those valid for homopolymers.

PACS numbers: 61.41.+e
In recent years, work on polyampholytes and on
biomolecules, such as proteins, has focused much atten-
tion on the conformational properties of inhomogeneous
polymeric chains (heteropolymers) [1]. Some of these
properties, such as protein folding, are expected to be de-
termined by the specific sequence of different monomers
constituting the chain [2]. In this context, particularly
relevant is a statistical point of view, according to which
the behavior of large ensembles of different sequences
is globally tested with philosophy and methods of the
physics of quenched disordered systems [3]. Such studies
are intended to provide information on the conditions
under which specificity becomes important (i.e., disorder
becomes relevant) and to give global descriptions of its
possible effects.

The collapse from a swollen to a compact globular
state of a long macromolecular chain is by now well
understood in the case of homopolymers. At temperature
T , a chain with N ¿ 1 equal monomers has an average
radius of gyration RN ~ Nn�T �. n�T � is equal to the
exponent of a self–repelling chain [self-avoiding walks
(SAW)] [4] for all temperatures T . Tu , and to 1�d for
T , Tu , as appropriate for a compact object. n�Tu� �
nu has a distinct, intermediate value, known both in
3D �1�2� [5] and in 2D �4�7� [6]. This transition is
triggered by attractive interactions between monomers as
T decreases. In the case of heteropolymers, the theta
transition involves the same sequence of regimes and
preludes to the folding phenomenon, for which specificity
is surely of key importance. Thus, one can wonder if
chain disorder could substantially affect polymer behavior
already at the onset of theta collapse, or even at higher T .

Unlike random environment disorder for a homopoly-
mer, if amounting to a small perturbation, inhomogeneities
in the structure of the chain should in general be expected
to be irrelevant and not able to affect the ordered system’s
behavior, as far as universal scaling is concerned. This
is suggested by Harris’ criterion [7] as we discuss below.
In fact, contrary to previous conjectures [8], recent work
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on a model of randomly charged polymers in 2D and 3D
has shown that disorder does not change the universality
class of the theta transition [9], consistent with the most
simple scenario one could infer based on the application
of the above criterion. On the other hand, it is known
that bond disorder can drastically alter the multicritical be-
havior of some spin models [10]. This suggests that one
should explore more fully the possible effects of random-
ness for multicritical systems such as polymers at the theta
point. In this Letter we give evidence that sufficiently
large amounts of chain disorder and frustration can modify
the heteropolymer theta behavior, with respect to the ho-
mopolymer one. Thus, in such situations, chain specificity
becomes a key ingredient in determining the universality
class of the theta point. Quite remarkably, this point seems
to fall right at the upper limit of temperatures for which dis-
order plays a relevant role.

As a heteropolymer model we consider here an N-
step SAW on a square lattice. On each lattice site visi-
ted by the walk sits a monomer. Monomers i and j
�0 # i, j # N�, which are not consecutive along the chain
(i fi j, jj 2 ij fi 1) and occupy nearest neighbor lattice
sites in a given configuration, feel an attractive potential
Vij (i and j constitute a contact indicated by �ij�). Vij is
random with probability distribution P�Vij� � pd�Vij 1

V � 1 �1 2 p�d�Vij 2 V � �V , 0�. Its values are as-
signed independently to each pair of monomers along the
sequence. Models of this kind were already used for pro-
teins [3]. We choose it here because, since disorder is
associated with monomer pairs rather than to individual
monomers, the annealed partition can be easily mapped
into a well-defined effective homopolymer problem.

One has to compute free energy and other thermal
averages for each possible potential arrangement along
the sequence. Results have then to be further averaged
over disorder. In addition, one would like to establish
how important fluctuations due to different disorder
configurations are in the evaluation of the final results.
A typical case is that of the free energy: the quenched
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quantity is the disorder average of the logarithm of the
partition function, ZN �V � �

P
v exp�2

P
�ij�[v Vij�T �,

where the number of steps of all of the chain configu-
rations v is implicitly assumed equal to N . If the
distribution of ZN values is sharply peaked around its
disorder average, ZN � S�V �P�ij�P�Vij�ZN �V �, we have
ln�ZN � � ln�ZN � for N ! `, and disorder plays no role,
i.e., annealed and quenched free energies, respectively,
are identical.
Since the potentials for different �ij� are independent
random variables, the annealed problem reduces to a
standard homopolymer problem with an effective attrac-
tive interaction 2T log �exp�2Vij�T �	. Now, imagine
perturbing, with a slight disorder �p 
 0�, the attrac-
tive homopolymer situation (p � 1, Vij � 2V ). The
possible relevance of disorder can then be discussed by
looking at n replicas of the SAW, for which the average
partition can be put in the form
Zn
N �

X
va ,a�1,...,n

exp

"
2

1
T

X
b

X
�ij�[vb

Vij 1 2
1

2T2

X
g,d

X
�kl�[vg

X
�mn�[vd

dVkldVmn 1 . . .

#
, (1)
where a cumulant expansion has been used for disor-
der averages, and Vij � V �1 2 2p�, while dVijdVkl �
4p�1 2 p�di,ldj,k. Thus, if Vij�T is fixed to the value
appropriate for the renormalization group fixed point of a
homopolymer at the theta transition, according to Eq. (1)
the leading perturbation to this fixed point is given by
an operator proportional to the number I�vg , vd� of dis-
tinct contacts common to two replicas in configurations
vg and vd [11]. The relevance or irrelevance of the
disorder perturbation depends on whether, for the two
replicas, the average of I grows with N or not. By ex-
act enumeration we studied this average for two repli-
cas of up to 19 steps without mutual interactions, and
verified to high precision that indeed, at the theta point,
or even at lower temperatures, it saturates to a constant
for growing N . This implies irrelevance and could lead
one to expect that finite amounts of disorder also would
not be sufficient to subtract the theta transition from the
control of the homopolymer fixed point. In such a sce-
nario the borderline temperature Td , below which dis-
order becomes possibly relevant, should always strictly
satisfy Td , Tu .

To determine Td is highly nontrivial. A straightforward
strategy could consist of extrapolating the ratio Z2

N� ZN
2

to N ! `. According to general theorems [12], if this
ratio tends to some finite B $ 1, the annealed free energy
should be obtained for a fraction of all sequences summing
up to a probability $1�B. Thus, if B � 1, quenched and
annealed problems must coincide. B is, in principle, ade-
quate only to establish an upper bound on Td . In addition,
since quantities such as ZN are wildly diverging and sensi-
bly oscillating for increasing N , B estimates are problem-
atic and we have to use a different strategy [9]. Besides n,
entropic exponents also characterize SAW scaling. For ex-
ample, one expects ZN 
 Nga21K2N

a for N ! ` [4]. ga

must take on the distinct values (appropriate for homopoly-
mers) 43�32 and 8�7, for T . Tau and T � Tau [4,6], re-
spectively, where Tau indicates the theta temperature of the
annealed problem. For T , Tau the precise value of ga is
still debated and may be nonuniversal, depending on lattice
and boundary conditions [13]. If the polymer has one end
fixed on an impenetrable boundary in semi–infinite geome-
try, the behavior of the corresponding partition function,
Z1N , changes only to the extent that ga is replaced by a
boundary exponent g1a, while the exponential growth has
the same Ka [4,14]. Thus, ZN� Z1N grows as Nga2g1a ,
which is easier to extrapolate [15]. If one assumes for the
quenched free energies exp�log�ZN �	 and exp�log�Z1N �	
similar behaviors with exponents g and g1, respectively,
g 2 g1 � ga 2 g1a should hold for extrapolated differ-
ences, as long as annealed and quenched free energies
coincide. The temperature at which the two differences
possibly cease to be equal should be identified with Td .
If Tau . Td , one must also find Tau � Tu , and all theta
exponents in the annealed and quenched problems are the
same. Td determinations based on checking the validity
of g 2 g1 � ga 2 g1a are much more precise than those
based on the analysis of exponential growths. Indeed, as
illustrated for a similar model in Fig. 4 of Ref. [9], the two
differences of quenched and annealed exponents start de-
viating rather abruptly and substantially for T # Td .

The basic tool of our approach is the exact determination
of all possible contact maps [16] for a polymer of N steps.
The contact map in a given configuration v is the set of
contacts �ij� [ v. After all of the maps have been sorted,
since interactions pertain to contacts, the (entropic) free
energy associated with each map can be evaluated exactly,
once and for all, and used in order to perform relatively
fast averages over the disorder affecting the interactions.
This latter averaging could be performed either exactly or
by extensive Monte Carlo (MC) sampling (up to 2 3 104

potential configurations) for the longest chains considered
here. Our contact map algorithm alone can treat chains of
length exceeding by at least 4 steps the maximum length
reached in most recent work [17].

We determined for N up to 22 and all T the averages

�R2
N � � S�V �P�ij�P�Vij� �R2

N � �V � , (2)

where �R2
N � �V � is the thermally averaged end-to-end dis-

tance for a particular �V �. �R2
N � is expected to grow with

N ! ` as a power law with the three exponent values
mentioned above. We expect that effective exponents,
n�M, K , T � �

1
2 log��R2

M���R2
M2K ��� log�M��M 2 K�	,

should interpolate smoothly between values, which, for
increasing M, approach the swollen and the compact n
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exponents, for T . Tu and T , Tu , respectively. If the
trends of approach are monotonic and opposite in the
two cases, it is also very possible to find that the various
curves n � n�M, K , T � bend quite rapidly and intersect
each other in a narrow region of the �T , n� plane, each in-
tersection representing an approximate determination of
the asymptotic nu . In fact the pattern of T dependence we
found for n�M, K , T � is of this kind for all values of p we
tested. We identified Tu as the center of the relatively nar-
row T range within which the trend of various n�M, K , T �
changes from monotonically increasing to monotonically
decreasing with M. This can be done by use of suitable
data correlators [9]. nu is then determined by extrapola-
tion of �R2

N � at Tu . Figures 1 and 2 show determinations
of nu and Tu , respectively. Tau is known with high preci-
sion based on the mapping of the annealed problem onto
the effective homopolymer one (Fig. 2). Tu remains re-
markably close to Tau in the whole range 0 , p , 1.
This means that Td should never overcome Tu , even for
very large p’s. That Td . Tu should be ruled out is rather
plausible, since sequence disorder is very unlikely to af-
fect the swollen phase. On the other hand, the behavior
of nu as a function of p is pretty stable and nicely consis-
tent with the homopolymer universality class �nu 
 4�7�
only for p # 0.50 0.55. For larger p’s, nu starts deviat-
ing rather markedly �nu 
 0.64� from 4�7 and increases
up to 
0.68 for p close to 1. Even if uncertainties do
not allow one to identify precisely a different plateau
for p * 0.55, the deviation from the homopolymer theta
point universality class is very clear. This evidence is
enforced by further results for the crossover exponent
fu defined by d

dT �R2
N �jT�Tu


 Nfu12nu and extrapo-
lated from our determinations of this derivative at Tu .
The pattern is qualitatively similar to that of Fig. 1. A
plateau �f 
 0.45� slightly above the exact homopolymer
fu � 3�7 [6] is also seen in this case for p , 0.50 0.60

FIG. 1. Extrapolated nu as a function of p. For details of
these and other determinations, see Ref. [9].
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while, for p * 0.60, again clear increasing deviations
from this value occur.

The above deviations for p * 0.50, combined with
Tu 
 Tau , suggest that, in the upper range of p, Td should
be very close to, and possibly coincide with, Tu . A strict
coincidence is the most plausible way in which disorder
could affect the universal theta point properties, while leav-
ing Tu � Tau . Quite remarkably our determinations of
Td based on extrapolations of g 2 g1 and ga 2 ga1 are
pretty consistent with this conclusion. Although uncer-
tainties are not small, Td 
 Tu is clearly suggested by
the overall pattern of determinations (Fig. 2) for p * 0.5
while, for p & 0.5, one definitely finds Td , Tu , consis-
tent with the picture conjectured above. Our methods do
not allow satisfactory control of the low temperature prop-
erties and on their basis we can draw only very tentative
conclusions on the nature of the compact phases. On the
other hand, the diagram in Fig. 2 could suggest that for
p below threshold there exist two distinct compact phases,
one more glassy at very low T , and one more similar to the
compact phase of homopolymers at higher T (molten glob-
ule). Similar phases are found in mean field treatments of
continuum heteropolymer models of protein folding [18].

The inclusion of repulsive interactions in the range
of possible V values, with the consequent possibility of
frustration effects, appears necessary in order to produce
the above change of the universality class. We tested
distributions P of the two delta function forms with support
both on two positive, and on one positive and one zero
(dilution) values for V . For these cases, our methods did
not give evidence of substantial changes of nu with varying
p. Thus, the change from low- to high-p theta regimes
could have analogies with a transition from ferromagnetic
to spin glass ordering [1].

In summary, we have given evidence that a sufficient
amount of sequence disorder and repulsive interactions can
be relevant for the heteropolymer behavior in the whole
range T # Tu , determining in particular a universality
class different from that of homopolymers for the theta

FIG. 2. Temperatures playing a role in the problem.



VOLUME 83, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JULY 1999
FIG. 3. Exact (empty dots) and MC (full dots) data for
p � 0.80.

transition. This is strongly suggested by the global consis-
tency of our results for various exponents and temperatures
of both quenched and annealed problems. The conjecture
that Td � Tu in the high frustration regime, is rather natu-
ral and implies the intriguing possibility that, when frus-
tration is high enough, specificity becomes a key factor in
the quenched statistics right from where the heteropolymer
starts collapsing.

The limited accuracy and asymptoticity of our determi-
nations do not allow precise conjecture on the nature of
the transition regime in the whole range 0.50 & p , 1.
Tau approaches 0 very steeply for p ! 12 �Tau�p� 

21� log�1 2 p�	. Also Td should approach 0 for p ! 12

since at all T on the p � 1 line the behavior of the system
is that of a SAW, controlled by a T � ` fixed point. The
proximity of this line could be responsible for the increase
of our n estimates �n 
 0.68� for p closer to 1.

In order to rule out the possibility that our results could
be explained just in terms of a very slow crossover to
homopolymer theta behavior, due to the presence of the
SAW line, we made an exceptional effort in extending to
larger N by MC methods our determinations of �R2

N � for
the particular case p � 0.80. Experience [8,9] has taught
us that, besides the difficulty of thermal sampling at low
T , which can, e.g., be solved by application of multiple
Markov chain algorithms [19], a major limitation of MC
in this field is that quenched averages have to be carried
out over very large ensembles of chain sequences in order
to produce reliable results. This is even more compelling
when chain specificity plays a relevant role. By extensive
simulations based on a multiple Markov chain method
[19] (grids of up to 40 temperatures and 
600 different
sequences for each N), we obtained extra determinations
of �R2

N � up to N � 64. The log-log plot of Fig. 3 confirms
very nicely the trend of the exact enumeration results
and clearly excludes a crossover. On the basis of all
data we could estimate nu�0.8� � 0.64 6 0.01 [20], which
qualifies as our best exponent determination concerning the
expected novel theta universality class at p * 0.50. The
value of this exponent is surprisingly very close to that
appropriate for branched polymers in 2D [21].

We expect that the new theta universality class could
be found also in more realistic heteropolymer models.
Polyampholytes with screened interactions and nonzero
total charge [8,22] are good candidates. In general, the
universality class at the theta point should change as soon
as disorder and frustration exceed a certain threshold.
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