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Analytic Computation of the Instantaneous Normal Modes Spectrum in Low-Density Liquids
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We analytically compute the spectrum of the Hessian of the Hamiltonian for a system ofN particles
interacting via a purely repulsive potential in one dimension. Our approach is valid in the low-density
regime, where we compute the exact spectrum also in the localized sector. We finally perform a
numerical analysis of the localization properties of the eigenfunctions.
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Great efforts have recently been made to find a com
prehensive microscopic theory able to describe the b
havior of supercooled liquids [1]. Among others, a ke
point is to understand the mechanism of the glass tran
tion, and to find a description suitable both for the supe
cooled liquid and for the amorphous solid which form
at low temperatures.

The general frame, where a great number of rece
analyses have been performed, is the instantaneous n
mal modes (INM) approach [2]. The main idea of this ap
proach is that liquids are “solidlike” at short timest , t,
where the typical diffusion timet increases strongly when
lowering the temperature. Liquid dynamics would cor
respond in this picture to vibrations about some equilib
rium positions with periodic jumps into new local minima
[3]. In order to describe in a quantitative way this behav
ior, it is important to study the properties of the Hessia
matrix of the Hamiltonian, averaged over the equilibrium
Boltzmann distribution. The crucial quantity is the typi-
cal spectrum of the Hessian, whose eigenvectors are th
so-called instantaneous normal modes. The determinat
of the spectrum therefore represents a vital task for a
theoretical study of liquids.

The aim of this Letter is to outline an analytic approac
for the computation of the INM spectrum. Some impor
tant steps in this direction have recently been done in [
and [5], where a remarkably good agreement with nume
cal simulations on liquids has been achieved and whe
more realistic models than the one we study here we
considered. However, these former analytic computatio
of the INM spectrum assumed aGaussian probability
distribution for the auxiliary degrees of freedom of the
liquid [5] (this technical point will be clarified later) and
we think that a Gaussian approach is likely to be to
simple for a study of nontrivial spectral properties, such a
localization. This is a crucial difference with the compu
tation we present here, which, going beyond the Gaussi
approximation, allows us to better investigate the spe
trum in the localized sector.

Let us consider a system ofN interacting particles
with Hamiltonian H �

PN
k.l V �rkl�, where V �r� is a
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two-body potential. The Hessian matrixA is defined
by A

mn
kl � ≠

m
k ≠

n
l H, with m, n � 1, . . . , d, d being the

dimension of the space. In the present Letter we sh
consider the one dimensional cased � 1, in order to
keep the algebra as simple as possible. The form oA
is Akl � 2Jkl 1 dkl

PN
i Jki , whereJkl � V 00�rkl�. The

diagonal term ofA is a consequence of the translation
invariance of the system, which requires

PN
k Akl � 0.

As a first step in our analysis, we must find out what
the probability distribution of the matrixJ induced by the
equilibrium probability over the positions of the particle
We introduce here our first approximation, assuming t
the probability distributionP�J� is factorized into the
single probabilities of the particle pairs. In this way th
elements ofJ (but not ofA) are independently distributed
i.e.,P�J� �

QN
k.l p�Jkl�. This approximation works well

at low densities, where the three-particle correlations
negligible.

Once this factorized form forP�J� is assumed, we can
express the pair probabilityp�J� as

p�J� �
r

N

Z
dr g�2��r�d���J 2 V 00�r���� , (1)

whereg�2��r� is the two-particle correlation function andr

is the density. In the following we shall consider the so
sphere potentialV �r� � 1�rm. In this case density and
temperature scale homogeneously, so that we can sim
fix the densityr � 1 and consider the high temperatur
regime as equivalent to the low-density one. This do
not hold for a nonhomogeneous potential and what follo
must be interpreted as a low-density calculation.

In the definition ofp�J� we must insert the explicit
form of g�2��r�, which can be obtained by means of som
approximation schemes in liquid theory or by numeric
simulations. In the present context we want to show
results of our method in the simplest analytical way,
that we stop at the first order of the virial expansion a
assumeg�2��r� � exp�2bV �r��. Thus, from Eq. (1), we
have

p�J� �
1
N
e2bsJb

J11c
�

1
N
q�J� , (2)
© 1999 The American Physical Society
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with bs � b �m�m 1 1��1��m12�, b � m��m 1 2� and
c � 1��m 1 2�. For realistic values of m (typically m �
12) the parameter b is very close to one. Therefore, we
will directly set b � 1 in p�J� in order to simplify our
calculation. We will show in the discussion of our results
that the actual spectrum is very weakly dependent on this
approximation. As it stands the distribution p�J� is not
normalizable, but we can regularize it in the following
way. Let us put an infrared cutoff r̄ , by setting V �r� � 0
for r . r̄, and let h � V �r̄�. We obtain in this way a
regularized form of the pair probability

ph�J� � d�J� 1
1
N

µ
q�J�u�J 2 h�

2 d�J�
Z `

h
dJ 0 q�J 0�

∂
, (3)

where q�J� is defined in Eq. (2). In the following we shall
use the notation

� f�J�	 �
Z `

h
dJ q�J� � f�J� 2 f�0�� . (4)

Note the following important point: the distribution ph�J�
is diluted, since the probability of finding an element of
the matrix J larger than h is of order 1�N .

In order to compute the spectrum of A we introduce the
resolvent Gkl�l j J� � �l 2 A 1 ie�21

kl . In the following
we shall include the small imaginary term ie in l.
The spectrum (or density of states) D�l� is then given
by D�l� � lime!0 Im TrG�l��pN , where G�l� is the
average over J of the resolvent. Following the recursive
method of [6], we now write a self-consistent equation
for G. Given a system of N particles, we add an extra
particle, with label 0, and we write the expression of the
�0, 0� component of G in the �N 1 1�-particle system,
isolating the contribution of the 0th particle:

iG
�N11�
00 �l j J� �

1
Z

Z
df dc1 · · · dcNf2eS�f,c1···cN �,

where Z is the effective partition function and f � c0.
The action S is given by

S �
i
2

lf2 2
i
2

NX
k�1

J0k�f 2 ck�2

1
i
2

NX
k,l�1

ck�G�N��21
kl cl .

In the same spirit as the cavity method [7], we have writ-
ten a self-consistent equation which relates the element
G

�N11�
00 of the system with �N 1 1� particles, to the ma-

trix G
�N�
kl of the system with N particles. We note that

G
�N�
kl is the resolvent of the system in the absence of the 0

particle and therefore it does not depend on the new vec-
tor J0k . Besides, it is shown in [6] that only the diagonal
elements contribute to the last sum in the action S.

Since we have to perform an average over J, it is useful
to introduce replicas, by writing Z21 � lim

n!0
Zn21. After
replication we have

iG
�N11�
00 �l j J0k ,G

�N�
kk �

� lim
n!0

1
n

Z
d �f � �f�2V� �f j J0k ,G

�N�
kk � ,

where �f � �f1 · · · fn� and

V� �f j J0k ,G
�N�
kk � � ei�l�2�

Pn

a
f2
a

3
Z NY

k�1

d �cke
2�i�2�

PN ,n

k,a
J0k�fa2ck,a�2

3 e
�i�2�

PN ,n

k,a
c

2
k,a�G�N��21

kk . (5)

The crucial quantity is now the average probability
distribution V� �f�, obtained by averaging expression (5)
over J. Indeed, from V we can reconstruct the average
resolvent G by integration over �f and therefore obtain
the spectrum. Thus, unlike what has been done in [6],
we shift our attention to the pursuit of a self-consistent
equation for V and not for the resolvent G itself. Let us
note that, it is this very distribution, V� �f�, as mentioned
in the introduction, that is assumed to be Gaussian in
the calculations of [4] and [5] [the distribution s�X � in
Section III.B of [5] is exactly the same object as our
V� �f�].

The dependence on the matrix J of V is divided into
two independent parts: the vector J0k and the matrix G�N�.
We can therefore compute separately the two averages and,
after some algebra, we have

V� �f� � ei�l�2�
Pn

a
f2
a

3 exp

µ Z
d �c V� �c� �e2�i�2�J

Pn

a
�fa2ca�2

	
∂

.

We can now obtain a more tractable integral equation by
defining the following function g:

g� �f� �
Z
d �c V� �c� �e2�i�2�J

Pn

a
�fa2ca�2

	 .

Note that g measures the deviation from the Gaussianity
of V, so that obtaining a nonquadratic form of g means
going beyond the Gaussian approximation of [4] and [5].
The integral self-consistent equation for g is

g� �f� �
Z
d �c ei�l�2�

Pn

a
c2
a1g� �c� �e2�i�2�J

Pn

a
�fa2ca�2

	 .

(6)

We now assume that g depends only on the modulus
x of the replica vector �f, so that we can perform the
angular part of the integral, then average over the disorder
distribution ph�J�, and finally let h ! 0, to get

g�x� �
G�2 2 c�
c�c 2 1�

∑µ
bs 1

ix2

2

∂c
2 bc

s

∏

2 x
Z `

0
dy K�x, y�ei�l�2�y21g� y�

(7)
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K�x, y� �
G�2 2 c� �1 1 c�

G� 32c
2 �G� 31c

2 �
xy
4

3
Z 1

0
dt

µ
t

1 2 t

∂�12c��2

3

Ω∑
bs 1

i
2

�x2 1 y2�
∏2

1 tx2y2

æ�c22��2

.

These two equations are the main result of this letter.
It is possible to prove analytically that g�x� � 2x2c for
x ¿ 1, thus proving that V is definitely not a Gaussian
distribution. Notably, we have been able to numerically
solve the equation for g�x� without any further approxima-
tion. Indeed, Eq. (7) has the form of a fixed-point equa-
tion, so that it is tempting to try to solve it numerically by
iteration. This is what we have done: discretized the func-
tion g and the kernel K on a lattice. We have found that
the convergence is rather fast and very weakly dependent
on the small imaginary part e of l. Indeed, by setting di-
rectly e � 0, the results are very satisfactory and we are
able to obtain the solution up to arbitrary precision. Once
g for a given value of l was obtained, we computed the
spectrum D�l�, using the formula

D�l� � Re

Ω
1
p

Z `

0
dx xei�l�2�x21g�x�

æ
,

which follows from the definitions of D, G and g. The
results are shown in Fig. 1, where we have plotted the INM
spectrum D as a function of l, for m � 12.

The spectrum has positive support because d � 1 and
it depends on the scaled inverse temperature bs in the ex-
pected way: for low temperatures (high bs) the collisions
among particles are weaker, so that the spectrum is peaked
on the lower value of the eigenvalues. On the other hand,
the tail for large l is larger at higher temperature. We have
found that D�l� � e2al for l ¿ 1, but we have not been
able to express a as a function of the parameters b and m,
even if it is numerically evident that a is a monotonically
increasing function of bs.

A crucial task is now to check whether the result we
found is correct. To this end we have done extensive
numerical simulations. Once we draw a matrix J with
probability (3), we build A and diagonalize it numerically.
Since the spectrum has huge tails for large eigenvalues, it
is convenient to compare simulations with analytic results
to consider the probability distribution p of m � lnl,
that is, p�m� � D�em�em. In Fig. 2 we plot p�m� as
obtained from the analytic form of D�l�, together with
the one obtained from numerical simulations. The two
curves are in excellent agreement confirming the validity
of our result. Besides, we show in the inset of Fig. 2
the numerical spectrum obtained with the original value
of b � m��m 1 2�. The result justifies the sensibility of
the approximation b � 1.

An equation similar to (6) was derived in [8], with
a different method and within a different context. In
that case too, the distribution of the disorder was di-
luted and translationally invariant, but the explicit prob-
ability distribution p�J� was bimodal, p�J� � d�J� 1
110
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FIG. 1. The INM spectrum D as a function of l for different
values of the scaled temperature bs; m � 12 and e � 0. The
plot is in log-linear scale. Inset: D�l� for bs � 1.5 in linear-
linear scale. The spectrum vanishes at l � 0.

p
N �d�J 2 1�p� 2 d�J��, where p was the connectivity
[8]. Yet, even with this simple bimodal distribution the
spectrum had not been worked out explicitly until now.
Remarkably, we have been able to compute exactly the
spectrum associated with this bimodal distribution, by nu-
merically solving the corresponding self-consistent equa-
tion [8]. The spectrum is shown in Fig. 3 and can be
compared with the approximated solution of [9]. Note
that in the liquid spectrum there is no trace of the small
tail oscillations present in the bimodal case [9].

An important issue is the analysis of the localization
properties of the eigenfunctions. With respect to this an
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FIG. 2. Numerical simulations versus analytic solution. We
plot here for b � 1 the probability distribution p�m�, with
m � lnl; N � 600, h � 1024, bs � 1, and m � 12. Inset:
On the same scale, analytic result for b � 1 versus simulations
performed with b � m��m 1 2�.
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FIG. 3. Analytic solution. The spectrum in the case of the
bimodal distribution, with p � 20 and e � 0.005. The small
nonzero value of D for l ! 0 is due to the nonzero value of
e, since the limit e ! 0 is very delicate in the bimodal case.

important quantity is the average inverse participation ra-
tio (IPR) Y �l�, which provides information on the na-
ture of the eigenfunctions and can be easily computed via
numerical simulations. The IPR is defined as Y �la� �PN
i�1 �wia�2, where a � 1, . . . ,N is the eigenvalue index

and wia � ��la j i	�2 is the weight of site i in the eigen-
function jla	.

In Fig. 4 we plot Y as a function of l. It is clear that
there are two localization edges, separating a central region
of extended eigenvalues from the tails where localized
states are present. For l ! 0 the IPR goes to 1 and this
corresponds to a single particle nearly decoupled from the
rest of the system. Note that the limit Y ! 1 for l ! 0 is
smooth, due to the fact that the J distribution we consider is
divergent at J � 0, so that it never happens that one single
element in a row of J is of order 1, with all others equal
to zero. This behavior in the left tail cannot be present
in the case of a bimodal distribution. On the other hand,
the localized states of the right tail correspond to pairs of
very strongly interacting particles and this naturally leads
to an IPR equal to 1�2. A more detailed discussion of
localization, following [10], will be presented elsewhere.

In this Letter we have outlined a general method to
study analytically the INM spectrum of a liquid at low
densities. We have succeeded in an exact computation
in the simple d � 1 case, but our method is suitable for
extending to dimensions larger than 1, where the Hessian
is not positively defined and negative eigenvalues exist.
The presence of negative modes in three-dimensional
systems is particularly relevant in connection with the glass
transition [2]. Indeed, it has been argued in the context
of the INM approach that the mode coupling transition,
marking the crossover from a non-Arrhenius behavior of
the viscosity to an Arrhenius one, occurs when the fraction
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FIG. 4. The IPR Y as a function of the eigenvalue l at
different values of N . h � 1024, bs � 1, and m � 12. The
thick curve is the corresponding spectrum D�l�.

of negative delocalized modes (the only ones related to
collective particle diffusion) drops to zero [11]. In view
of this, an approach such as the one presented here, which
is able to investigate also the properties of the localized
modes, can prove extremely useful. We will address the
extension of our method to higher dimensions in a future
paper.
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