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Non-Gaussian Dynamics in Quasi-2D Noncolloidal Suspensions
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We study experimentally the hydrodynamic-interaction-controlled random walk (RW) of noncolloidal
spheres in a quasi-2D fluidized suspension. This macroscopic “molecular” system is anisotropic.
Particle trajectories are Brownian-like and, from time to time, fast upward correlated. The vertical
RW is hyperdiffusive, but the horizontal one is Gaussian. Velocity fluctuation distributions vary from
Gaussian to exponential as particle concentration C increases. The dynamics varies from liquidlike
to gaslike as C decreases. These features are attributed to the formation of “transient channels” at
higher C.

PACS numbers: 82.70.Kj, 47.15.Pn, 61.20.–p
Complex fluid flows are typically associated with
inertial effects, as, for example, in turbulent and granular
material flows. The trajectories in such flows are often
chaotic, and can lead to anomalous random walks, such
as the celebrated Levy walk [1]. Slow, viscous flows can
also be complex, however, as a result of the structure in
which the flows occur: porous media or suspensions are
two such examples. In porous media, the flow reflects
the frozen disorder of the pore space. In suspensions,
fluid and particles interact in continuously changing
geometrical configurations, as a result of their relative
motion. In some way, suspensions can be viewed as
fluctuating porous media, in which the fluid flow adapts to
the instantaneous porous medium created by the particle
configuration, and at the same time, induces a change of
this configuration.

In recent numerical simulations [2,3] in 2D and 3D
porous media, it was found that flows in low-porosity
porous media form stationary, localized, channelized
structures. These focused flow patterns result in long-
tailed stretched exponential probability distribution
functions (PDF) for the velocity fluctuations [2,4].
They were also experimentally confirmed using nuclear
magnetics resonance [5,6]. In noncolloidal suspensions
of monodisperse spherical particles in a viscous liquid,
the particle velocity is determined by the instantaneous
configuration of all other particles. As a result of the
long-range hydrodynamic interaction, the spatial distri-
bution of the particles is not stationary and the particles
experience a permanent stochastic motion, or random
walk (RW), the so-called hydrodynamic dispersion
[7–11]. So far, theoretical efforts have addressed issues
of the particles mean square velocity fluctuations [7,10].
However, there are no predictions on their PDFs.

The statistical description of complex flows has proved
to be a powerful tool in understanding their main features.
For example, the complexity of turbulent and granu-
lar material flows can be captured by analyzing the
moments and correlation functions of the velocity fluc-
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tuations [12,13]. Likewise, various statistical approaches
(determining mean velocity and mean square velocity
fluctuations) have been applied for the understanding of
porous media and suspensions [2,14,15]. In this Letter,
we present experimental results for the PDFs of the ve-
locity fluctuations and for the properties of the RW of
monodisperse spherical particles in a quasi–2D suspen-
sion. For this purpose, we use a counterflow stabilized
suspension [8], namely a liquid-solid-fluidized bed.

To follow the suspension dynamics and the particle
trajectories reliably and extensively, we designed a trans-
parent quasi-2D fluidized bed. The bed consists of a
transparent vertical, Hele-Shaw cell, filled with spherical
particles, just slightly smaller than the gap of the cell,
which are kept suspended by an upward uniform flow of
a viscous fluid. We record the trajectories and velocities
of all the particles. Various particle concentrations, up
to close packing, can be studied. Our data conclusively
show the following: (i) the velocity fluctuation PDFs are
stretched exponential, with concentration dependent expo-
nents; (ii) the particle RW is anisotropic, namely Gauss-
ian diffusive along the horizontal, but hyperdiffusive along
the vertical direction; and (iii) the particle system exhibits
a change from gaslike to liquidlike behavior as the con-
centration increases. The hyperdiffusion can be under-
stood as a kind of Levy walk on nonstationary channelized
structures. The results suggest an analogy between porous
media and 2D suspension flows, which will be discussed
below. More generally, our experiment can be viewed as a
macroscopic “fluidlike” system, in which the “molecules”
are the spherical particles, and where we can study the
“fluid” at the scale of individual molecules, along with the
resulting “pseudoturbulence” of particles in laminar flow.

Experimental.—The Hele-Shaw cell consists of two
parallel glass plates of length L � 80 cm and width W �
10 cm, separated by a uniform spacer which ensures a
constant gap of thickness b � 2.0 mm. The cell is held
vertically along the larger dimension. The monodisperse
spherical particles are roller bearings made of aluminum
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or brass (of relative density 2.7 or 8.7, respectively),
with a diameter 2a � 1.50 mm. The injected fluid is a
water-glycerin mixture, with density 1.25 and kinematic
viscosity n ranging between 2.5 and 5 1024 m2 s21. At
such conditions, the sedimentation velocity of a single
sphere is Vs � 1 cm s21, implying a small corresponding
Reynolds number, Re � aVs�n , 1021. Hence, the flow
is viscous and far away from any kind of inertial
turbulence. Under the low Re number condition, the
bed exhibits a stable uniform expansion [8,14]. As is
well known, the bed expansion, and the resulting mean
particle concentration, are controlled by the upward fluid
velocity Vd . We note that in the present 2D fluidized
bed, one can use the area fraction, C, as a measure of the
particle concentration. In the experiments, this fraction
was varied in the range between 8% and 76%, with
maximum packing near C � 80%, which is close to the
maximum packing of well arranged disks [16].

During the process, the particles are in constant motion,
participating from time to time in the formation of dou-
blets, triplets, etc. To record particle trajectories and ve-
locities, the entire bed is illuminated and a CCD videotape
camera records the movements of each of the 2000 beads.
Each image is digitized and the position of the illuminated
centers of all particles is recorded using NIH software.
By tracing each particle between consecutive frames, we
can record trajectory and instantaneous velocities of all
2000 particles (Fig. 1), with an accuracy of 0.1 mm in po-
sition and 5% in velocity. Figure 1a shows a snapshot of
the fluctuating structure, which consists partly of instan-
taneous swirls, analogous to those recently observed in
sedimenting dilute suspension experiments [11]. One
notes that the vectors of the larger velocities typically
point upwards. Figure 1b shows two trajectories, corre-
sponding to two different particles.

Velocity PDF.—Using our technique we measured
all velocity components in the fluidized bed. As the
particles are stationary on average, the velocities observed
also represent velocity fluctuations. The mean square
horizontal and vertical velocity components have the

FIG. 1. (a) A snapshot of particle velocities. (b) Two
different particle trajectories (scale in mm, C � 54%).
same value (within 5%), denoted uo . Thus, the quasi-2D
suspension reveals more isotropy than in 3D, where the
ratio between vertical and horizontal velocity fluctuations
has been reported to be larger than 2 [9,10]. Figure 2a
shows in a log-linear plot the PDFs of the vertical velocity
fluctuations. From our statistics (involving more than
5 3 105 values over 4 decades), the velocity PDFs can be
fitted reasonably well with a stretched exponential (solid
lines in Fig. 2a), namely

P�u�uo� � exp�2b�juj�uo�j�C�� , (1)

where the exponent j�C� varies between 1 and 2 as C
decreases in the range of Fig. 2b. We recall that the
Gaussian value 2 corresponds to a Maxwell-Boltzmann
distribution, as in the kinetic theory of a perfect gas. The
PDFs of the horizontal velocity are left-right symmetric
regardless of the concentration, and evolve from nearly
Gaussian (j � 2) at low C to almost exponential (j �
1) at high C. At low concentrations, the PDFs of the
vertical velocity tend to be also symmetric (up-down
symmetric). When the concentration increases, however,
the vertical PDFs become asymmetric: they are Gaussian
for the downward velocity and stretched exponential

FIG. 2. (a) Probability distribution function of verti-
cal velocity components at various concentrations [C �
12���, 22�±�, 36�3�, 54���, 70���%] in a log-linear plot (grid
space: one decade). The solid curves are best-fit stretched-
exponentials with exponent j. (b) Concentration dependence
of the exponent j [left and right velocity ���, downward
velocity exponent ���, upward velocity exponent ���].
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for the upward velocity with an exponent equal to the
horizontal ones. At large concentrations, our suspension
exhibits transient, continuously evolving structures. As
shown in Fig. 1a, particles moving downwards have small
velocity and organize into large density areas, analogous
to clusters. Particles that move upwards are faster and
flow along paths analogous to channels in porous media.
Whereas the “slow particle” trajectories are Brownian-
like (Fig. 1b, right), the “fast particles” exhibit correlated
features (Fig. 1b, left). As the upward trajectories of
the fast particles also include a horizontal component
of motion, they increase the tails of the PDF of both
the horizontal and upward velocity, making such PDFs
stretched exponentials.

We note that stretched-exponential PDFs have been
previously observed in both porous media and in granular
flows. In numerical simulations of the fluid velocity
fluctuations in porous media [2], lowering the porous
medium porosity (which in our case is equivalent to
increasing C) led to an increased focusing of the fluid
along channellike structures. This focusing resulted in
stretched-exponential PDFs. At larger porosity, however,
the channelized structure increasingly weakened and the
PDF tends to a Gaussian. Non-Gaussian PDFs have been
also observed in simulations of inelastic granular media
[13] and in experiments with granular monolayers [17].
They were associated with the continuous creation and
destruction of clusters of particles. The nearly exponential
tails of the PDFs obtained there were attributed to the
dynamics dominated by particle-particle interaction [17].

Both analogies with porous media and with granular
monolayers can be tentatively applied to our system.
For example, the fast particles behave like particles
moving from one cluster of slow particles to another
one, as in granular flows. At the same time, the fast
particles appear more localized than the slow ones, while
their upward velocity reveals a strong upward localized
fluid flow, as in porous media flows. These features
support a tempting analogy between 2D suspensions
and porous media: the fast particles could be seen as
particles convected by the fast upward eroding flow which
takes place in transient localized channels (“fractures”),
whereas the slow particles represent the porous media
backbone. However, contrary to the porous medium case,
there is no sharp transition between the Gaussian and the
stretched-exponential regimes (even in the flatness of the
PDF [2]); see Fig. 2b.

Random walk.—From the recording of the position
of each particle versus time, we can compute the hori-
zontal and vertical mean square displacements. At short
times, the mean square displacements in both directions
are found to be proportional to t2. This is the signature
of a ballistic regime from which we can obtain the mean
square velocity fluctuations: V 2

x � V 2
z � u2

0. This regime
is observed for all concentrations with no particular scal-
ing for the value of the velocity fluctuations, which varies
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smoothly from �0.2Vd at low C to �0.6Vd at larger C for
the two types of beads used (aluminum and brass). To
track the diffusive behavior, we plot in Fig. 3 the diffu-
sivity, namely the mean square displacement normalized
by twice the time, for an intermediate concentration value
(C � 0.36). This plot clearly demonstrates the anisotropy
of the random walk. The horizontal direction diffusivity
reaches a long time plateau which reflects the diffusive
nature of this component of the random walk, namely

lim
t!`

�x�t� 2 x�0��2 � 2Dxt . (2)

This is true regardless of the concentration C. On the
other hand, the diffusivity of the vertical component keeps
on increasing with time, at large times, and up to a
traveled distance comparable to the cell size. Here, the
nature of the random walk along the vertical direction is
hyperdiffusive [18,19] and can be tentatively described as
a power law,

lim
t!`

�z�t� 2 z�0��2 � ta , where a � 1.25 6 0.05 .

(3)

This combined behavior is displayed in the trajectories of
Fig. 1b. The maximum displacements of the two different
particles are of the same order along the horizontal
direction, but much different along the vertical one, where
one is five times larger than the other. We can infer that
the hyperdiffusive behavior is due to the presence of fast
particle trajectories. Any given particle experiences at
different times a sequence of fast and slow trajectories.
This sequence is reminiscent of Levy walks, which also
manifest a hyperdiffusive behavior [1]. Again, our quasi-
2D suspension appears to compare better with flow in
porous media, which can induce hyperdiffusion [18], than
with 3D suspensions, which lead to normal diffusion
[7,9,10]. It is likely that the particles in our quasi-2D
suspension interact more strongly with the walls than
with the other particles. As a consequence, they are less
“mobile” than in 3D suspensions and constitute a kind of

FIG. 3. Horizontal (bottom) and vertical (top) diffu-
sivity (mean square displacements normalized by time)
�x�t� 2 x�0��2�2t and �z�t� 2 z�0��2�2t, as a function of
time, for C � 36%. The long-time horizontal random walk is
diffusive, whereas the vertical one is hyperdiffusive.
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FIG. 4. Time dependence of the horizontal velocity autocorre-
lation functions at C � 12���, 22�±�, 36�3�, 54���%. The in-
set shows an enlargement around the negative minimum. It
reflects the signature of a liquidlike behavior, except at low
concentrations, where it vanishes and where the quasi-2D sus-
pension has a gaslike behavior.

porous media, as mentioned previously. Given that their
velocity reflects the local velocity of the fluid, they should
then exhibit characteristics similar to the fluid velocity in
porous media.

The anisotropy of the 2D suspension is also evident
in the velocity autocorrelation function (VAF) (which is
the second derivative of the mean square displacement
[20]: R�t� � V �t� � V �0� � �1�2�d2��z�t� 2 z�0��2��dt2).
R�t� computed from our velocity measurement is plotted in
Fig. 4. The vertical VAF first decreases as an exponential
decay and then breaks into a long time tail which does not
reach zero in the range of accessible time (here limited by
the cell boundary), as expected from the vertical RW. The
horizontal VAF decreases rapidly, becomes negative, and
then tends to zero from below at large times (Fig. 4). This
negative minimum is usually identified as the signature of
a liquid structure [20]. It is deeper at large concentrations
and disappears at low ones (inset of Fig. 4). This is also
consistent with the fact that at low concentrations the
velocity PDFs tend to be Gaussian symmetric. These two
remarks support the contention that our particle system
exhibits a gas-like behavior at low concentrations. Note
that 3D simulations of suspensions did not show such a
gaslike limiting state [10].

In conclusion, we have measured the dynamics, namely
the velocity PDF, the RW, and the VAF, of a quasi-2D
suspension of monodisperse macroscopic particles. The
particles execute a random walk, which is increasingly
anisotropic as the concentration increases, with the hori-
zontal component always being Gaussian. In the limit of
small C, the behaviour of this macroscopic “molecular”
system is isotropic and gaslike. As C increases, fast and
slow trajectories along the vertical direction, analogous
to a Levy walk, lead to stretched-exponential PDFs and
hyperdiffusion. The vertical component PDFs are more
asymmetric, as C increases. These features are attributed
to dynamic localized channelized structures analogous to
the static ones observed in low-porosity porous media.
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