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We give a constructive proof that all mixed states of N qubits in a sufficiently small neighborhood
of the maximally mixed state are separable (unentangled). The construction provides an explicit
representation of any such state as a mixture of product states. We give upper and lower bounds
on the size of the neighborhood, which show that its extent decreases exponentially with the number of
qubits. The bounds show that no entanglement appears in the physical states at any stage of present
NMR experiments. Though this result raises questions about NMR quantum computation, further
analysis would be necessary to assess the power of the general unitary transformations, which are
indeed implemented in these experiments, in their action on separable states.

PACS numbers: 03.67.Lx, 76.60.–k, 89.80.+h
In this Letter we investigate the structure of the space
of density matrices of N spin-1�2 particles (qubits). In
particular, we consider density matrices that are close to
the maximally mixed density matrix and ask whether or
not they are separable. A separable density matrix is one
that can be written as a mixture of direct-product states.
The statistics of all measurements made on a separable
state of N qubits can be understood in terms of classical
correlations among spin directions. Thus a separable state
has no quantum entanglement. It has been argued that
entanglement is the essential resource that gives a quantum
computer its enhanced information-processing power [1].

One might imagine that the question addressed here is
straightforward, in that the maximally mixed state seems to
be very far from the boundary between separable and non-
separable states. It might be the case, however, that the
maximally mixed density matrix is surrounded by separa-
ble matrices, but that these separable density matrices lie in
a low-dimensional subspace within the space of all density
matrices. By leaving this subspace, even infinitesimally,
one could reach entangled density matrices. In Ref. [2]
this problem is addressed by an existence proof; namely, it
is shown that there exists a sufficiently small neighborhood
of the maximally mixed density matrix inside which all
density matrices are separable. In Ref. [3] a lower bound
on the size of the neighborhood is given. Here we go fur-
ther by giving a constructive proof that provides an ex-
plicit representation of any state sufficiently close to the
maximally mixed one as a mixture of product states. We
give an upper bound and a much improved lower bound
on the size of the neighborhood, which show that the size
decreases exponentially with the number of qubits.

Our results have immediate implications for present re-
search that makes use of high-temperature, liquid-state nu-
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clear magnetic resonance (NMR) for quantum-information
processing and quantum computation [4–15]. Since the
first proposals to use NMR for quantum computation, there
has been surprise about the apparent ability to perform
quantum computations in room-temperature thermal en-
sembles. It has been a puzzle how these thermal states,
which are very close to the maximally mixed state, could
correspond to truly entangled states [16]. The bounds we
calculate show that all states so far used in NMR for
quantum computations or for other quantum-information
protocols are separable. This does not mean that NMR
techniques are incapable of producing entangled states, in
principle. Increasing the number of correlated spins might
lead to nonseparable states, but this question is left open
by the bounds derived in this paper.

We consider arbitrary density matrices for N qubits,
written as

re � �1 2 e�Md 1 er1 , (1)

where d � 2N is the Hilbert-space dimension for N qubits,
Md � 1d�d is the maximally mixed density matrix (1d is
the identity matrix in d dimensions), and r1 is an arbitrary
density matrix. Any density matrix can be written in the
form (1). In the NMR context there are a macroscopic
number of molecules in the liquid sample, each containing
N active nuclear spins, and the density matrix (1) describes
the state of each molecule. We show that for e sufficiently
small, all density matrices of the form (1) are separable.
We define two kinds of representations of re in terms
of product states, which provide candidates for ensemble
decompositions of re as a mixture of product states. By
considering these candidate decompositions, we derive an
explicit lower bound on the size of the neighborhood of
separable states. We conclude by establishing an explicit
upper bound on the size of the neighborhood.
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Our approach is to represent an arbitrary density ma-
trix in an overcomplete matrix basis, each basis element
of which is a pure direct-product density matrix. If all the
coefficients of a density matrix in this representation are
non-negative, the coefficients can be considered to repre-
sent probabilities, and the density matrix is separable, as
it is then a mixture of direct products.

All of our representations arise ultimately from expand-
ing a density matrix for N qubits in terms of direct prod-
ucts of Pauli matrices:

r �
1

2N
ca1...aN sa1 ≠ · · · ≠ saN . (2)

Here and throughout we sum over repeated indices:
Greek indices run over the values 0, 1, 2, 3, and Latin
indices take on the values 1, 2, 3. The matrix s0 � 12 is
the two-dimensional identity matrix, and the matrices si ,
i � 1, 2, 3, are the Pauli matrices. The (real) expansion
coefficients in Eq. (2) are given by the expectation values
tr�rsa1 ≠ · · · ≠ saN � � ca1...aN . (3)

Normalization requires that c0···0 � 1. Since the eigen-
values of the Pauli matrices are 61, the expansion coeffi-
cients satisfy 21 # ca1···aN # 1.

To be concrete, we consider first the case of two qubits.
For each qubit we introduce six pure density matrices,
Pi � 1

2 �12 1 si� and Pi � 1
2 �12 2 si�. A convenient

discrete overcomplete basis for discussing separability
consists of the 36 direct-product projectors, each of which
is a pure direct-product density matrix: Pi ≠ Pj , Pi ≠ Pj ,
Pi ≠ Pj , Pi ≠ Pj . Any density matrix of two qubits
can be expanded in this basis, but since the basis is
overcomplete, the representation is not unique. We make
a specific choice, as follows. Noting that si � Pi 2

Pi and 12 � Pi 1 Pi , we can write 12 � vi�Pi 1 Pi�,
where vi � 1�3, i � 1, 2, 3. With these results we can
convert the Pauli representation (2) into the form
r �
1
4

��vivj 1 ci0vj 1 vic0j 1 cij�Pi ≠ Pj 1 �vivj 2 ci0vj 1 vic0j 2 cij�Pi ≠ Pj

1 �vivj 1 ci0vj 2 vic0j 2 cij�Pi ≠ Pj 1 �vivj 2 ci0vj 2 vic0j 1 cij�Pi ≠ Pj� . (4)
If the coefficient of each of the 36 basis elements is
non-negative, the density matrix is separable. We note
that when the maximally mixed density matrix for two
qubits, M4 � 1

4 12 ≠ 12, is represented as in Eq. (4), the
coefficient of each of the basis matrices is 1�36.

Consider now an arbitrary entangled (nonseparable)
density matrix r1. Since r1 is entangled, at least one of
the coefficients in the representation of r1 in the form
(4) is negative. Suppose now that r1 is mixed with
the maximally mixed density matrix M4 as in Eq. (1),
i.e., re � �1 2 e�M4 1 er1. Although some of the
coefficients of r1 are negative, all of the coefficients
of M4 are strictly positive. Hence, for e small enough,
all the coefficients of re are non-negative, making re

separable. Thus all density matrices in a sufficiently small
neighborhood of the maximally mixed density matrix are
separable.

Furthermore, we can find an explicit bound on e such
that re is separable for any r1. To find a bound, we use
jca1a2 j # 1 to bound the coefficients in a representation
of r1 of the form (4). The minimum value of any of the
coefficients is �1�4� �1�9 2 1�3 2 1�3 2 1� � 214�36.
Thus all the coefficients of the density matrix re in
the discrete overcomplete basis are non-negative if �1 2

e��36 2 14e�36 $ 0, i.e., if e # 1�15. For e # 1�15,
the representation (4) is an explicit decomposition of re

as a mixture of direct products.
A similar analysis can be carried out for any number

of qubits. Starting from the Pauli representation (2), we
introduce a discrete product basis, like that for two qubits,
and define a representation analogous to that in Eq. (4).
Using jca1...aN j # 1 to limit the size of the coefficients in
this representation, we find an asymptotic lower bound on
the size of the neighborhood of separable density matrices
that is of order e � 1�4N for N qubits.

We turn now to another overcomplete basis for the
space of density matrices, a basis labeled by continuous
parameters. An arbitrary density matrix for N qubits can
be represented as

r �
Z

dV1 · · · dVN w� �n1, . . . , �nN �P �n1 ≠ · · · ≠ P �nN ,

(5)
where the integral runs over N Bloch spheres and where
P �n � 1

2 �12 1 �n ? �s� is the projector onto the pure state
located at unit vector �n. The representation (5) is by
no means unique. In a spherical-harmonic expansion of
w� �n1, . . . , �nN �, the density matrix determines only the
l � 0 and l � 1 components; the higher-order spherical
harmonics correspond to the freedom in representing r as
a sum of one-dimensional product projectors. A separable
density matrix is one for which there exists a non-
negative w� �n1, . . . , �nN �, which can thus be interpreted as
a probability density. In terms of the representation (5),
the expectation values (3) are given by

ca1...aN �
Z

dV1 · · · dVN w� �n1, . . . , �nN �

3 �n1�a1 · · · �nN �aN , (6)

where �nj�0 � 1. This illustrates that if the state is sepa-
rable, the statistics of measurements can be understood in
terms of classical correlations among spin directions.

We can generate a candidate for a separable ensemble
decomposition of r by considering the unique represen-
tation of the form (5) such that w� �n1, . . . , �nN � has only
l � 0 and l � 1 components. We can obtain this unique
representation by noting that
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1
2

sa �
3

4p

Z
dV n̄aP �n , (7)

where n̄0 � 1�3 and n̄j � nj . Inserting this result into
the Pauli-matrix expansion (2) and using Eq. (3) gives

w� �n1, . . . , �nN � �

√
3

4p

!N

ca1...aN �n̄1�a1 · · · �n̄N �aN

�
1

�4p�N
tr�r�12 1 3 �n1 ? �s�

≠ · · · ≠ �12 1 3 �nN ? �s�� . (8)

The maximally mixed density matrix, M2N , has w �
�1�4p�N . The representation (8) has been considered
previously by Scully and Wódkiewicz [17].

Let us concentrate on the operator product in the
last form of Eq. (8). Each operator in the product has
eigenvalues 4 and 22. Thus the most negative eigenvalue
of the operator product is 4N21�22� � 222N21, which
implies that

w� �n1, . . . , �nN � $ 2
22N21

�4p�N
. (9)
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Consider now the density matrix (1). Its candidate
ensemble probability satisfies

we� �n1, . . . �nN � �
1 2 e

�4p�N
1 ew1� �n1, . . . , �nN �

$
1 2 e�1 1 22N21�

�4p�N
. (10)

Therefore re is separable if

e #
1

1 1 22N21 �
N!`

2
4N

. (11)

We see again that all density matrices in the neighborhood
of the maximally mixed density matrix are separable, and
we obtain a lower bound on the size of the separable
neighborhood. For N $ 4 our bound is better than the
bound e # 1��1 1 2N21��N21�, given in Ref. [3].

One particularly interesting example is the Green-
berger-Horne-Zeilinger (GHZ) state [13,18], a state of
three qubits with density matrix
rGHZ �
1
2

�j111� 1 j222�� �	111j 1 	222j� �
1
8

�12 ≠ 12 ≠ 12 1 12 ≠ s3 ≠ s3 1 s3 ≠ 12 ≠ s3

1 s3 ≠ s3 ≠ 12 1 s1 ≠ s1 ≠ s1 2 s1 ≠ s2 ≠ s2

2 s2 ≠ s1 ≠ s2 2 s2 ≠ s2 ≠ s1� , (12)

for which Eq. (8) gives a representation

wGHZ� �n1, �n2, �n3� �
1

�4p�3 �1 1 9�c1c2 1 c2c3 1 c1c3� 1 27s1s2s3 cos�w1 1 w2 1 w3�� $ 2
26

�4p�3 . (13)
Here cj � cosuj and sj � sinuj , and the minimum
occurs at u1 � u2 � u3 � p�2 and w1 1 w2 1 w3 �
p . Thus the mixed state re � �1 2 e�M8 1 erGHZ is
separable if e # 1�27, in which case no measurement can
reveal evidence of quantum entanglement.

Up to this point we have been thinking of the number
of qubits as being fixed, and we have investigated the
boundary between separability and nonseparability as the
amount of noise, specified by e, changes. We now shift
gears, thinking of the qubits as particles with spin and
asking what happens as the number of particles or their
dimension changes, while e is held fixed. In general, as
we go to more particles or higher spins, we find that we
can tolerate more mixing with the maximally mixed state
and still have states that are not separable. In other words,
for a given e, we can always find states of sufficiently
large numbers of particles or sufficiently high spin for
which re is nonseparable. We translate this result into
an upper bound on the size of the separable neighborhood
around the maximally mixed state.

Consider now two spin–�d 2 1��2 particles, each living
in a d-dimensional Hilbert space. What we have in mind is
that each of these particles is an aggregate of N�2 spin-1�2
particles (qubits), in which case d � 2N�2. We consider
a specific joint density matrix of the two particles,

re � �1 2 e�Md2 1 ejc� 	cj , (14)

where jc� is a maximally entangled state of the two
particles,

jc� �
1
p

d
�j1� j1� 1 j2� j2� 1 · · · 1 jd� jd�� . (15)

Now project each particle onto the subspace spanned
by j1� and j2�. The state after projection is
r̃ �
1
A

√
1 2 e

d2 14 1
e

d
� j1� j1� 1 j2� j2�� �	1j 	1j 1 	2j 	2j �

!
� �1 2 e0�M4 1 e0jf� 	fj , (16)

where A � �4�d2� �1 1 e�d�2 2 1�� is the normalization factor,
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jf� �
1
p

2
�j1� j1� 1 j2� j2�� (17)

is a maximally entangled state of two qubits, and

e0 �
2e�d

A
�

ed�2
1 1 e�d�2 2 1�

. (18)

The projected state r̃ is a Werner state [19], a mixture
of the maximally mixed state for two qubits, M4, and
the maximally entangled state jf�. The proportion e0

of maximally entangled state increases linearly with d.
Thus, as d increases for fixed e, there is a critical
dimension beyond which r̃ becomes entangled. Indeed,
the Werner state is nonseparable for e0 . 1�3 [19,20],
which is equivalent to d . e21 2 1. Moreover, since
the local projections on the two particles cannot create
entanglement from a separable state, we can conclude that
the state (14) of N qubits is nonseparable under the same
conditions, i.e., if [21]

e .
1

1 1 d
�

1
1 1 2N�2 . (19)

This result establishes an upper bound, scaling like 22N�2,
on the size of the separable neighborhood around the
maximally mixed state.

Our results have implications for attempts to use
high-temperature NMR techniques to perform quantum
computations or other quantum-information-processing
tasks. They imply that NMR experiments performed
to date have not produced genuinely entangled density
matrices. This is because in current experiments, the
parameter e, which measures the deviation from the
maximally mixed state, has a value �3 3 1025, much
smaller than the lower bounds we have found for the
radius of the separable neighborhood of the maximally
mixed state, for the cases of two or three spins used in
these experiments.

Present high-temperature NMR techniques, based on
synthesizing a pseudopure state, give an e that scales like
N�2N as the number of qubits increases at constant tem-
perature [4,6]. With this scaling, the state re leaves the
region where our lower bound implies that all states are
separable at about 13 qubits, but it never enters the re-
gion where our upper bound guarantees that there are en-
tangled states. Thus, it is unclear whether present NMR
techniques can produce entangled states. Different tech-
niques might lead to a more favorable scaling behavior for
e [22].

The results in this Letter suggest that current NMR
experiments are not true quantum computations, since no
entanglement appears in the physical states at any stage
[1]. We stress, however, that we have not proved this
suggestion, since we would need to analyze the power
of general unitary operations, which are successfully
implemented in these experiments, in their action on
separable states [23]. To reach a firm conclusion, much
more needs to be understood about what it means for a
computation to be a “quantum” computation.
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