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Approximate Quantum Counting on an NMR Ensemble Quantum Computer
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We demonstrate the implementation of a quantum algorithm for estimating the number of matching
items in a search operation using a two qubit nuclear magnetic resonance quantum computer.

PACS numbers: 03.67.Lx, 33.25.+k, 76.60.–k
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Quantum computers [1,2] offer the tantalizing prospe
of solving computational problems which are intractab
for classical computers. A variety of algorithms have be
developed, most notably Shor’s algorithm for factorizin
composite numbers in polynomial time [3,4], and Grover
quantum search algorithm [5,6]. Until recently these a
gorithms were only of theoretical interest, as it proved e
tremely difficult to build a quantum computer. In the las
few years, however, there has been substantial progr
[7–9] in the construction of small quantum compute
based on nuclear magnetic resonance (NMR) studies [
of the nuclei of small molecules in solution. NMR quan
tum computers have been used to implement a variety
simple quantum algorithms, including Deutsch’s algorith
[11,12] and Grover’s algorithm [13–15].

NMR quantum computers differ from other implemen
tations in one important way: there is not one single qua
tum computer, but rather a statistical ensemble of the
For this reason NMR quantum computers should be d
scribed using density matrices rather than the more us
ket notation. In some cases this ensemble nature is irre
vant: it is possible to prepare the system with an initial de
sity matrix indistinguishable from that of a pure eigensta
(a pseudopure eigenstate), and as long as the result is
other pseudopure eigenstate the behavior of an ensem
quantum computer is identical to that of a convention
quantum computer. Some algorithms, however, produ
a superposition of states (relative to the natural NMR co
putational basis) as their final result, and in such cases
behavior of an ensemble quantum computer will be qu
different.

An important example is Grover’s algorithm when ther
is more than one matching item to be found [16]. Suppo
a search is made overN items among which there arek
matching items. AfterO�

p
N�k � evaluations of Grover’s

search function the quantum search algorithm will produ
an equally weighted superposition of thek matching items.
With a conventional quantum computer this state allow
one of thek matching items to be determined at random
as a measurement will result in one of the states contrib
ing to the superposition. With an ensemble quantum co
050 0031-9007�99�83(5)�1050(4)$15.00
ct
le
en
g
’s
l-
x-
t
ess
rs
10]
-
of

m

-
n-
m.
e-
ual
le-
n-
te
an-
ble

al
ce

m-
the
ite

e
se

ce

s
,

ut-
m-

puter, however, different members of the ensemble res
in different states, and the final signal will be an avera
over thek matching values. In general it will be difficult or
impossible to deduce anything about individual matchin
items from this ensemble average, and so NMR quant
computers will not be capable of carrying out convention
Grover searches when more than one item matches
search criteria.

An alternative approach to searching is to determi
whether any matching items are found in some desir
portion of the search space. A binary search will then pe
mit the first matching item, for example, to be located
approximately log2�N� attempts. This is a sensible strat
egy if some efficient algorithm for counting matches ca
be found. Fortunately this can be achieved by a simp
modification of Grover’s quantum search, approxima
quantum counting [16–18].

Suppose we have a functionf�x� which mapsn-bit bi-
nary strings to a single output bit, so thatf�x� � 0 or
1. In general there will beN � 2n possible input val-
ues, withk values for whichf�x� � 1. Grover’s quantum
search [5,6,16] allows one of thesek items to be found,
while quantum counting [16–18] allows the value ofk to
be estimated. The counting algorithm can be considered
a method for estimating an eigenvalue of the Grover itera
G � HU0H21Uf , which forms the basis of the search
ing algorithm [the operatorH corresponds to then-bit
Hadamard transform,U0 mapsj000 · · · 0� to 2j000 · · · 0�
and leaves the remaining basis states alone, andUf maps
jx� to �21�f�x�11jx�].

Starting from the statej000 · · · 0� �000 · · · 0j apply the
Hadamard operatorH to obtain an equally weighted su-
perposition of all basis states. For0 , k , N

Hj000 · · · 0� � �jC1� 1 jC2���
p

2 , (1)

where jC1� and jC2� are two of the eigenvectors ofG
with eigenvaluese6ifk , where sin�fk�2� �

p
k�N . These

eigenvalues show why the probability of success in
Grover search is a periodic function of the number of iter
tions with period1�fk � 2

p
N�k [16]. A more detailed

description is given in [18,19]. For the two extreme case
© 1999 The American Physical Society
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k � 0 and k � N , Hj000 · · · 0� is itself an eigenvector
with eigenvalue given by the formulas above.

Eigenvalue estimation is most easily described by con-
sidering a register which begins the calculation in an eigen-
vector of G, say jC1�. An additional control qubit is
needed which begins in the state �j0� 1 j1���

p
2; this may

be obtained from j0� by a Hadamard transform. The opera-
tor G is then applied to the target register when the control
bit is in state j1�, that is, a controlled G. The controlled G
produces the result

1
p

2
�j0� 1 eifk j1�� jC1� , (2)

or after r repetitions of the controlled G

1
p

2
�j0� 1 eirfk j1�� jC1� . (3)

A second Hadamard transform on the control qubit gives√
1 1 eirfk

2
j0� 1

1 2 eirfk

2
j1�

!
jC1� ; (4)

tracing out the target register and expanding the exponen-
tial terms gives for the final state of the control qubit

r �
1
2

µ
1 1 cos�rfk� i sin�rfk�
2i sin�rfk� 1 2 cos�rfk�

∂
. (5)

The same result is obtained if we replace jC1� with jC2�,
except that the two off-diagonal elements are negated.
Thus the same diagonal elements are also obtained from
any superposition or statistical mixture of the two, such as
Hj000 · · · 0� [Eq. (1)]. Starting with Hj000 · · · 0� in the
target register will entangle that register to the control
register (except when k � 0 or N) and tracing out the
target register gives the state

r �
1
2

µ
1 1 cos�rfk� 0

0 1 2 cos�rfk�

∂
(6)

in the control register. This will also be the state when
k � 0 or N .

A variety of different ensemble measurements can be
performed to characterize the final state of the control
qubit, but the simplest approach is to measure the expec-
tation value of sz . This corresponds to determining the
population difference between the j0� �0j and j1� �1j states
and is proportional to cos�rfk�. Note that in this case
ensemble quantum computers have an advantage: with a
single quantum computer it would be necessary to repeat
the calculation several times in order to obtain a statistical
estimate of cos�rfk�.

The value fk can be estimated by varying r (the number
of repetitions of the controlled G) in a manner based on the
technique of Kitaev [20]. For small k, fk is O�

p
k�N �,

so when r is on the order of
p

N�k we will observe a
significant sz . To count exactly, we need to distinguish
fk from all other fj, the most difficult cases being fk11
and fk21. Since jfk 2 fk21j and jfk11 2 fkj are O�1�p

k�N 2 k� �, then when r is on the order of
p

k�N 2 k�
we can distinguish fk from fk11, fk21, and the other
possibilities. In fact, determining fk with sufficient accu-
racy to determine k requires roughly

p
k�N 2 k� applica-

tions of G [21], while a classical algorithm would require
roughly N evaluations of f. It is also possible to estimate
k to some desired accuracy: to obtain an estimate k̃ with
accuracy e, that is,

jk̃ 2 kj # ek , (7)

uses on the order of �1�e�
p

N�k applications of G
[17,18,22], while a classical algorithm usually requires
about �1�e2�N�k evaluations of f [25].

A quantum circuit for implementing this algorithm on
a two qubit NMR quantum computer is shown in Fig. 1.
This differs from the conventional circuit in three ways.
First, pairs of Hadamard gates are replaced by an NMR
pseudo-Hadamard gate (a 90±y rotation) and its inverse
[11]. Second, the controlled-Hadamard gates inside the
controlled-G propagator have been replaced by uncon-
trolled gates; this is permitted as the intervening U0 gate
has no effect when the control spin is in state j0�. Finally
we implement the function f not using a complex network
of gates and auxillary qubits, as would be needed for some
real function whose properties were unknown, but by sim-
ply implementing the corresponding phase shift gates di-
rectly. This simplified implementation is necessary, as the
small size of current quantum computers does not permit
any other approach. The function implemented can, how-
ever, be selected by a third party, and so its properties re-
main unknown to the operator.

This algorithm was implemented using our two-qubit
NMR quantum computer [11], which uses two 1H nuclei in
a solution of cytosine in D2O; pseudopure states were gen-
erated using the approach of Cory et al. [7,8]. All NMR
experiments were carried out on a homebuilt spectrometer

FIG. 1. A quantum circuit for implementing quantum count-
ing on a two qubit NMR quantum computer; the central se-
quence of gates, surrounded by brackets, is applied r times.
The upper line corresponds to the control bit, while the lower
line corresponds to the target bit. A similar circuit can be
constructed for a larger search space by replacing the tar-
get bit by a register and replacing gates applied to the target
by multibit versions. Gates marked h implement the NMR
pseudo-Hadamard operation, while those marked h21 imple-
ment the inverse operation. Controlled gates are marked by a
circle and a vertical “control line.”
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at the Oxford Centre for Molecular Sciences, with a 1H op-
erating frequency of 500 MHz. The two spin states of the
1H nuclei act as qubits, and it is necessary to address each
spin individually. Previous experiments on this system
[11,14] have used soft pulses to achieve selective excita-
tion, and errors in these pulses have resulted in significant
distortions in observed spectra. For these experiments a
different approach was adopted, using nonselective hard
pulses whenever possible.

The 1H transmitter frequency was set in the center of the
spectrum, so that the two spins have angular frequencies
in the rotating frame of 6v�2. The Hamiltonian can then
be written in product operator notation [26] as

H �
v

2
Iz 2

v

2
Sz 1 pJIS2IzSz , (8)

where JIS is the spin-spin coupling constant, and weak cou-
pling has been assumed (i.e., v ¿ JIS). Using a combina-
tion of nonselective pulses and carefully chosen periods of
free evolution under H it is possible to implement many
of the necessary gates without the use of selective pulses.
For example, the controlled-Uf01

gate, which implements
the function when f�0� � 0 and f�1� � 1, can be con-
structed using the pulse sequence shown in Fig. 2.

Some gates, however, cannot be implemented without
using selective pulses; for example, the pseudo-Hadamard
gates within the controlled G should be applied only to the
target spin. Fortunately it is possible to create selective
pulses using only hard pulses and delays, and this process
is particularly simple when only two spins are involved.
For short periods of evolution under H the small spin-spin
coupling term can be neglected, and H � �v�2� �Iz 2

Sz�. Thus after a time e45 � p�2v the two spins will
have undergone rotations of 645± about their respective z
axes. This 6z rotation can be converted to a 6y rotation
by sandwiching the t period between 90±x and 90±2x pulses
(a variant of the more composite z pulse [10]). Combining
this with a 45± pulse along the y axis gives an overall 90±y
rotation for the first spin (I), but no nett rotation for the
second spin (S).

With minor variations this approach can be used to
generate selective pulses along any axis, and which excite
either I or S as desired. These selective pulses can then
be used to implement the remaining gates: for example,
a controlled Uf10

can be implemented using the circuit

FIG. 2. A pulse sequence implementing a controlled-Uf01
gate

using only hard pulses and periods of free precession. Pulse
rotation angles (in degrees) are marked above each pulse,
while pulse phases are marked within a pulse. Other periods
correspond to free precession under the Hamiltonian H for the
time indicated. These times are chosen such that 4d 1 e270 �
1��2JIS� and e270 � 3p�v.
1052
for controlled Uf01
with a selective 180± pulse applied

immediately before and after the other pulses.
The circuit shown in Fig. 1 encodes the result of the cal-

culation in the state of the control qubit, which could be
characterized by measuring the expectation value of sz for
the spin. This cannot be achieved directly, as z magneti-
zation is not a direct NMR observable, but an equivalent
measurement can be made by exciting the spin with a 90±y
pulse and observing the NMR spectrum. After phase cor-
rection the integrated intensity of the corresponding signal
gives the desired result. The phase correction step requires
a reference spectrum [11,14], which can be obtained by ac-
quiring a spectrum with r � 0.

Prior to acquisition a magnetic field gradient pulse was
applied to destroy the homogeneity of the main field. This
has the effect of dephasing (thus rendering undetectable)
all off-diagonal terms in the final density matrix [14], with
the exception of those corresponding to zero quantum co-
herence [10]. The zero quantum terms can also be re-
moved as they evolve at frequencies of 6v under the
Hamiltonian H . This zero quantum filter is easily com-
bined with a standard four-step CYCLOPS phase cycle [10],
to reduce instrumental imperfections.

The results of our NMR experiments are shown in
Fig. 3. Measurements were made for each of the four
possible functions: f00 (k � 0), f01 (k � 1), f10 (k � 1),
and f11 (k � 2). In each case the predicted signal is a
cosinusoidal modulation of the signal intensity as a func-
tion of r , the number of times the controlled G is applied,
where the frequency of the modulation, fk, depends onp

k�N . For the two-qubit case, where N � 2, the behav-
ior is particularly simple, with modulation frequencies of
0 (k � 0), p�2 (k � 1), and p (k � 2). In this case it

FIG. 3. Experimental results from our NMR quantum com-
puter for each of the four possible functions, f. The observed
signal intensity is plotted as a function of r, the number of
times the controlled-G operator is applied, and all intensities are
normalized relative to the case of r � 0. The solid lines are
exponentially damped cosinusoids with the theoretically pre-
dicted frequencies and are plotted merely to guide the eye.
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is possible to determine k using just one experiment, with
r � 1, but spectra were also acquired with larger values
of r , both to demonstrate the principle involved and to ex-
plore the buildup of errors in the calculation.

The experimental results do indeed show a cosinusoidal
modulation as expected, but they deviate from these simple
predictions in several ways. First, all the signals show a
clear decay in signal intensity as r is increased; this decay
is most rapid for f01 and f10 (where k � 1), and least
rapid for f11 (where k � 2). One possible explanation is
decoherence, but the observed decay rates are too rapid
for this to be the sole explanation: for the case of f11
with n � 15 the entire pulse sequence lasts around 1 s,
compared to a T2 value of about 3 s, and so a signal loss of
only about 30% might be expected. Another likely cause
is imperfections in the pulses applied, in particular, those
arising from variations in the strength of the resonant rf
field across the sample (B1 inhomogeneity). Both effects
are expected to be most severe when k � 1, as these
cases have complex Uf gates which take a long time to
implement, and least severe when k � 2, in which case
Uf is just the identity operation.

In addition to the main exponential decay other devia-
tions from the simple behavior predicted by theory can be
seen. These effects are clearest for f00 (k � 0), where sig-
nal intensities are seen to lie alternately above and below
the main curve. Such effects could in principle arise from
many different causes, but numerical simulations indicate
that the major cause is off-resonance effects. These occur
because the applied rf field is not perfectly resonant with
the NMR transitions, but instead is applied a small distance
(6v�2) away. Thus the effect of the field (in the rotating
frame) is not simply to cause a rotation around itself, but
rather to cause a rotation around a tilted axis [10]. We are
currently seeking ways to reduce the size of such effects.

Despite these small errors the results are remarkably
good, especially for f11. In this case the experiments
have been repeated with much larger values of r , and the
cosinusoidal variation remains clearly visible after 60 or
more iterations (data not shown). Thus our NMR quantum
computer is capable of demonstrating quantum algorithms
involving several hundred quantum gates.
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