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The renormalization group has proven to be a very powerful tool in physics for treating systems with
many length scales. Here we show how it can be adapted to provide a new class of algorithms for
discrete optimization. The heart of our method uses renormalization and recursion, and these processes
are embedded in a genetic algorithm. The system is self-consistently optimized on all scales, leading to
a high probability of finding the ground state configuration. To demonstrate the generality of such an
approach, we perform tests on traveling salesman and spin glass problems. The results show that our
“genetic renormalization algorithm” is extremely powerful.

PACS numbers: 75.10.Nr, 02.60.Pn
The study of disordered systems is an active and chal-
lenging subject [1], and in many cases some of the most
basic consequences of randomness remain subject to con-
troversy. Given that numerical calculations of ground state
properties can shed light on these issues, it is not surprising
that more and more such calculations are being performed
[2]. Our goal here is to introduce and test a new general
purpose approach for finding ground states in disordered
and frustrated systems. In this Letter we illustrate its use
on the traveling salesman problem and on the spin glass
problem, showing that the ground states are found with
a high probability. More generally, our novel approach
should be very useful for many classes of discrete opti-
mization problems and is thus of major interdisciplinary
interest.

Although it is often claimed that physical insight into
disordered systems should lead to improved optimization
algorithms, thus far, there has been very little substance to
uphold this view. Aside from simulated annealing [3] and
generalizations thereof [4], physics inspired ideas, rang-
ing from replica symmetry breaking to energy landscapes,
have had little impact on practical algorithmic develop-
ments in optimization. Nevertheless, several ideas from
physics seemed promising, including renormalization [5]
and hierarchical constructions [6]. Perhaps, the impact of
these attempts has been minor because the resulting al-
gorithms were not sufficiently powerful to be competitive
with the state of the art. In our work, we have found that by
carefully combining some of these ideas, namely renormal-
ization and recursion, and by embedding them in a genetic
algorithm approach, highly effective algorithms could be
achieved. We thus believe that the essence of the renor-
malization group can be fruitfully applied to discrete opti-
mization, and we expect the use of this type of algorithm
to become widespread in the near future.

Let us begin by sketching some of the standard ap-
proaches for tackling hard discrete optimization problems
[7]. For such problems, it is believed that there are no
fast algorithms for finding the optimum, so much effort
has concentrated on the goal of quickly obtaining “good”
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near-optimum solutions by heuristic means. One of the
simplest heuristic algorithms is local search [8] in which
a few variables are changed at a time in the search for
lower energy configurations. This heuristic and numerous
generalizations thereof such as simulated annealing [3] op-
timize very effectively on small scales, that is on scales
involving a small number of variables, but break down for
the larger scales that require the modification of many vari-
ables simultaneously. To tackle these large scales directly,
genetic algorithms [9] use a “crossing” procedure which
takes two good configurations (parents) and generates a
child which combines large parts of its parents. A popu-
lation of configurations is evolved from one generation to
the next using these crossings followed by a selection of
the best children. Unfortunately, this approach does not
work well in practice because it is very difficult to take
two good parents and cross them to make a child which is
as good as them. This is the major bottleneck of genetic
algorithms and is responsible for their limited use. For an
optimization scheme to overcome these difficulties, it must
explicitly treat all the scales in the problem simultaneously,
the different scales being tightly coupled. To implement
such a treatment, we rely on ideas from the renormaliza-
tion group, the physicist’s favorite tool for treating prob-
lems with many scales [10]. Our approach is based on
embedding renormalization and recursion within a genetic
algorithm, leading to what we call a “genetic renormaliza-
tion algorithm” (GRA). To best understand the working
of this approach, we now show how we have implemented
it in two specific cases, the traveling salesman and the spin
glass problems.

The traveling salesman problem (TSP).—This routing
problem is motivated by applications in the telecommuni-
cation and transportation industries. Given N cities and
their mutual distances, one is to find the shortest closed
path (tour) visiting each of the cities exactly once [7].
In genetic algorithms, one takes two parents (good tours)
from a population and finds the subpaths they have in com-
mon. Then a child is built by reconnecting those subpaths,
either randomly or by using parts belonging to the parents
© 1999 The American Physical Society
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if possible; ultimately, these connections are not very good
and lead to a child which is less fit than its parents.

In our approach, instead of creating children as de-
scribed, we engineer new configurations from subpaths
that are frequently shared in the population. In practice we
pick k “parents” at random and determine their common
subpaths: these form the patterns which we select before
engineering the child. Then we wish to find the very best
child which is compatible with these patterns. (This child
should thus be at least as good as its best parent.) For
this new problem, each subpath is replaced by its two end
cities and one bond which connects them; together with
the cities which do not belong to any of the patterns, this
defines a new “renormalized” TSP with fewer cities. Note
that in this new TSP, we have removed all the cities inside
the selected subpaths, and have “frozen-in” bonds to con-
nect their end points; since we force these bonds to be in
the tours, the renormalized problem is really a constrained
TSP. The distance between two cities is the same as in the
nonrenormalized problem if they are not connected by a
frozen bond, otherwise their distance is given by the length
of the subpath associated with the frozen bond. If this re-
duced problem is small enough, it can be solved by direct
enumeration. Otherwise, we “open up the Russian doll”
and solve this renormalized problem recursively. Since
each parent is compatible with the selected patterns, each
of them corresponds to a legal tour for the renormalized
problem. Thus we can use these tours in the first genera-
tion of the recursive call of GRA: this way none of the in-
formation contained in the tours is lost.

How does one choose the number of parents k? Clearly,
the tour parts that are shared by all k parents decrease as
k grows and the child becomes less and less constrained.
Increasing k then has the effect of improving the best pos-
sible child but also of making the corresponding search
more difficult, so the choice of k results from a compro-
mise. Genetic algorithms being biologically motivated, the
choice k � 2 may seem natural, but it need not be optimal,
and empirically we find it not to be. We do not claim to be
the first to propose the use of more than two parents [11],
but in previous proposals, the performance turned out to
be lackluster. The reason is that they did not include the
two essential ingredients: (i) a selection of patterns; (ii) a
search for the best child consistent with the given patterns.

A bird’s eye view of our algorithm is as follows. We
start with a population of M randomly generated tours; a
simplified version of the Lin-Kernighan (LK) [12] local
search algorithm is applied to these tours which form
the first generation. To obtain the next generation, we
first produce by recursion as many children as there are
parents; then the local search improvement is applied to
these children; finally, duplications among the children and
children which present no improvement over their worst
parent are eliminated. The next generation consists of the
children remaining. The algorithm terminates when there
is only one individual left.
If the local search is taken as given (and we are not
concerned here about its detailed implementation), our al-
gorithm has two parameters, the number M of tours used
in the population and k the number of parents of a child.
In our numerical experiments for the TSP, we have cho-
sen M � 50 for the topmost level where we treat the initial
TSP instance, and M � 8 for the inner levels where renor-
malized instances are treated. Of course, other choices are
possible, but we have not explored them much. Let us just
note that it is desirable to have M large enough to have
plenty of diversity in the patterns which will be selected,
thereby increasing one’s chance of finding the ground state.
However, there is a high computational cost for doing this,
as each level of the recursion increases the CPU time mul-
tiplicatively. Thus the best strategy would probably be to
have M decrease with the level of the recursion. Concern-
ing the choice of the parameter k, a similar compromise
has to be reached. The best quality solutions would be
obtained with large k, but this would lead to many levels
of recursion and thus to very long computation times. In
practice, we increase k dynamically until, of the current
number of bonds to be found, at least a threshold fraction
of 10% remains unfrozen at this step. This ensures that the
renormalization does not reduce the problem size too dra-
matically, allowing good solutions to be found. For the
instances we considered, nearly all values of k were be-
tween 2 and 6, with 5 being the most probable value.

How well does the method work? For the TSP, it is
standard practice to test heuristics on problems from the
TSPLIB library [13]. We have tested our algorithm on
five problems of that library for which the exact optima
are known. As can be seen in Table I, the improvement
over the local search is impressive (we use a DEC-a-500
work-station to treat these instances). Still better results
could be obtained by improving the local search part.
Several other groups (see [4] and Chap. 7 of [8]) have
fine tuned their LK algorithm both for speed and for
quality. In spite of the fact that our version of LK is far
less effective, we obtain results comparable to theirs. We
believe that this excellent performance is possible because
GRA incorporates the essential ingredients which allow the

TABLE I. Tests on 5 instances from TSPLIB; the number in
the name of an instance represents its number of cities. DLK
and DGRA are the relative differences between the length found
by the corresponding algorithm and the optimum, tLK and
tGRA are the CPU times in seconds to treat one instance, and
PGRA represents the probability for GRA to find the optimum.
Data for the GRA have been averaged over 10 runs.

Instance DLK tLK DGRA tGRA�tLK PGRA

pcb442 1.9% 0.09 0% 2442 100%
rat783 2.0% 0.19 0% 2923 100%
fl1577 15.4% 0.63 0.0022% 3805 80%
pr2392 2.7% 0.98 0.0056% 5278 20%
rl5915 3.6% 3.94 0.013% 8202 0%
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optimization to be effective on all scales. To give evidence
of this, we now show that GRA is also extremely effective
on a very different problem.

The spin glass problem (SGP).—Spin glasses have
long been a subject of intense study in statistical physics.
One of the simplest spin glass models is that of Edwards
and Anderson [14] in which Ising spins (Si � 61) are
placed on a lattice and the interactions are between nearest
neighbors only. The corresponding Hamiltonian is

H � 2
X

�i,j�
JijSiSj

where the Jij are quenched random variables with zero
mean. For our purpose here, the spin glass problem con-
sists of finding the spin values which minimize H. To find
this minimum with a genetic algorithm approach, we need
the “building blocks” of good configurations. This time,
simply looking at the variables (spin orientations) which
are shared between parents is not effective since the en-
ergy is unchanged when all the spins are flipped. Instead,
we consider correlations among the spins. The simplest
correlation, whether two neighboring spins are parallel or
antiparallel, will suit our needs just fine. Consider first any
set of spins; if the relative orientations of these spins are the
same for all k parents, we say that they form a “pattern”;
the values of the spins in that pattern are then frozen up to
an overall sign change. Now we sharpen a bit this notion
of a pattern: we require the set of spins to be both maxi-
mal and connected, and we call such a set a block. (Note
that the patterns introduced for the TSP also had these two
properties.) We can associate a fictitious or “blocked”
spin to each such block to describe its state. Flipping this
blocked spin corresponds to flipping all the spins in the
block, a transformation which maintains the pattern (i.e.,
the relative orientations of the spins in the block).

With these definitions, it is not difficult to see that each
spin belongs to exactly one block (which may be of size 1
though). Furthermore, the configurations compatible with
the patterns shared by the k parents are obtained by speci-
fying orientations for each blocked spin; this procedure
defines the space spanned by all possible children. Not
surprisingly, the energy function (Hamiltonian) in this
space is (up to an additive amount) quadratic in the blocked
spin values, so finding the best possible child is again a
spin glass problem, but with fewer spins. Because of this
property, the renormalization and/or recursion approach
can be used very effectively, similarly to what happened
in the case of the TSP.

To find the (renormalized) coupling between two
blocked spins, proceed as follows. First put the two spins
in the up state; unblock each spin so that one has all the
spins of the initial system they are composed of. The
coupling between the two blocked spins is obtained by
summing the JijSiSj where Si belongs to the set defining
the first spin and Sj to that of the second. [Here, Si denotes
the value (61) of the spin i when its (unique) blocked
1032
spin is up. Note also that to obtain the total energy of a
blocked configuration, one also has to take into account
the energy inside each blocked spin.] Finally, a straight-
forward calculation shows that this formalism carries over
in the presence of an arbitrary magnetic field also.

Given the construction of blocks and a local search
routine [we use a version of the Kernighan-Lin (KL) [15]
algorithm], the GRA proceeds as before. For the number
of parents k, we follow the spirit of the procedure used for
the TSP: we increase k dynamically until the size of the
renormalized problem is at least 7.5% that of the current
problem. For this choice, k � 5 is the most frequent value,
and we find that the distribution of k is rather narrow.
(Clearly, when k increases, the size of the renormalized
problem increases rather rapidly.)

Testing the algorithm is not easy as there is no library
of solved SGP instances. Fortunately, when the grids are
two dimensional, there are very effective exact methods
for finding the optimum [16]. We thus performed a first
type of test where we ran our GRA on ten instances corre-
sponding to toroidal grids of size 50 3 50 with Jij � 61.
(The exact solutions were provided by J. Mitchell.) For
these runs we set M � 5 1 0.2N for each level (N being
the number of spins at that level). The algorithm halted
on the 6th, 7th, or 8th generation, and in all cases found
the exact optimum. Furthermore, we measured the mean
excess above the optimum for each generation. The first
generation corresponds to simply using the local search,
and had a mean excess above the optimum of 12%. There-
after, the mean excess energy decreased by a factor of 2 to
3 at each generation, until it hit 0. (Furthermore, instance
to instance fluctuations were small.) In terms of compu-
tation time, our local search took on average 0.02 sec on
these instances, and the average time taken by GRA was
16,000 sec. This performance is competitive with that
of the state of the art heuristic algorithm [17] developed
specifically for the SGP. Since this same property was
found to be satisfied in the case of the TSP, there is good
evidence that GRA is a general purpose and effective op-
timization strategy.

As a second kind of check on our method, we con-
sidered three-dimensional grids of size L 3 L 3 L with
Gaussian Jij’s for which exact methods are not so effec-
tive. These kinds of grids are of direct physical relevance
[1]. Since we did not know the exact optima, our analysis
relied on self-consistency: we considered we had found the
optimum when the most powerful version of our algorithm
(large M) output the same configuration with a probability
above 90%. Measuring this probability requires perform-
ing many runs, but once one has this putative optimum,
one can measure the performance of the algorithm in a
quantitative way. To achieve the precision required we
set M � N for the top level and M � 5 1 0.2N for inner
levels, then the probabilities to find the optimum are as
given in the last column of Table II. We also give in this
table the performance of the GRA with M � 15 for all the
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TABLE II. Tests on L 3 L 3 L SGP instances. DKL and
DGRA are the relative differences between the energy found by
the corresponding algorithm and the optimum, tKL and tGRA
are the CPU times in seconds to treat one instance. tGRA and
DGRA are results for M � 15. PGRA� represents the probability
for GRA to find the optimum when M � N at the top level and
M � 5 1 0.2N for inner levels.

L DKL tKL DGRA tGRA�tKL PGRA�

4 8.2% 7.9 1024 0.087% 19 99.8%
6 11.5% 1.5 1023 0.65% 43 98.6%
8 13.5% 2.7 1023 1.09% 85 98.0%

10 14.1% 7.1 1023 1.26% 104 94.0%

levels; for this choice of M, the algorithm is 1 to 2 orders
of magnitude slower than KL, but leads to mean energy
excesses that are 10 to 100 times smaller. Overall, the
quality of the solutions is excellent even with a relatively
small M, and we see that up to 1000 spins GRA is able
to find the optimum with a high probability provided M is
large enough.

For both the traveling salesman and the spin glass prob-
lems, our genetic renormalization algorithm finds solutions
whose quality is far better than those found by local search.
In a more general context, our approach may be considered
as a systematic way to improve upon state of the art local
searches. A key to this good performance is the treatment
of multiple scales by renormalization and recursion. The
use of a population of configurations then allows us to self-
consistently optimize the problem on all scales. Just as in
divide and conquer strategies, combinatorial complexity is
handled by considering a hierarchy of problems. But con-
trary to those strategies, information in our system flows
both from small scales to large scales and back. Clearly
such a flow is necessary as a choice or selection of a pat-
tern at small scales may be validated only at much larger
scales.

In this work, we put such principles together in a
simple manner; nevertheless, the genetic renormalization
algorithm we obtained compared very well with the state
of the art heuristics specially developed for the problems
investigated. Improvements in the population dynamics
and in the local search can make our approach even more
powerful. We thus expect genetic renormalization algo-
rithms to become widely used in the near future, both in
fundamental [18] and applied research.
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