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Strongly Correlated Electrons on a Silicon Surface: Theory of a Mott Insulator
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We demonstrate theoretically that the electronic ground state of the potassium-covered Si(111
surface is a Mott insulator, explicitly contradicting band theory but in good agreement with rece
experiments. We determine the physical structure by standard density-functional methods, and ob
the electronic ground state by exact diagonalization of a many-body Hamiltonian. The many-bo
conductivity reveals a Brinkman-Rice metal-insulator transition at a critical interaction strength; th
calculated interaction strength is well above this critical value.

PACS numbers: 71.30.+h, 71.10.Fd, 71.27.+a, 73.25.+ i
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Transport behavior in crystalline materials is governe
by the excitation spectrum: Insulators have a finite g
to excitations while metals have zero-energy excitation
Band theory accurately describes this distinction in mo
materials: Systems with only filled or empty bands a
insulating while systems with partially occupied band
are metallic. However, the band description may bre
down under circumstances when, roughly speaking, t
energy cost for forming an extended state exceeds
cost for forming a localized state. The resulting groun
state, which arises from electron-electron interactions th
band theory cannot describe, is known as a Mott insula
[1–3].

Surfaces provide a potentially fertile environment fo
Mott insulators [4]. Electrons occupying surface stat
may localize more readily than in the bulk, due t
two significant effects: (i) Atoms at surfaces hav
lower coordination than in the bulk, raising the energet
cost for electron hopping. (ii) Surfaces often underg
reconstructions, yielding much larger interorbital spacin
than in the bulk. These effects combine to make surfac
natural systems to look for Mott insulating behavior. I
a recent series of experiments, Weiteringet al. [5,6] used
photoemission and inverse photoemission to demonstr
that the K�Si�111�-�

p
3 3

p
3�-B surface has a gap at

the Fermi level. Since this system has an odd numb
of electrons per unit cellit must be metallic in a band
description, clearly contradicting the photoemission data
On this basis, Weiteringet al. hypothesized that this
system (hereafter K�Si-B) is a Mott insulator.

In this Letter we explicitly demonstrate, by exac
solution of the appropriate many-body Hamiltonian, th
the electronic ground state of K�Si-B is indeed a Mott
insulator. The calculation is in three parts. First, w
use standard density-functional methods to determ
the geometrical and electronic structure of this surfa
within the local-density approximation (LDA). Second
we map the relevant electronic states onto a many-bo
Hamiltonian, which we then solve on a periodic cluste
using exact diagonalization techniques. Third, we use
resulting many-body ground state to compute the ze
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frequency conductivity or Drude weight,D, and then
show that in the infinite systemD ! 0, that is, a metal-
insulator transition occurs in the thermodynamic limit.

Boron induces a well-known
p

3 3
p

3 reconstruction
of the clean Si(111) surface [7]. Boron substitutes fo
every third Si atom in the second subsurface layer, and
displaced Si assumes an adatom position above the bo
(see Fig. 1). The electron in the Si-adatom danglin
bond is transferred subsurface, enabling the B atom
participate in four covalent bonds. By this mechanism
the surface forms a conventional band insulator, leavi
each Si adatom with an empty orbital extending awa
from the surface. These orbitals form a triangular lattic
on the surface. In the experiments of Weiteringet al., K

FIG. 1. Side and top views of the fully relaxed structure o
K�Si�111�-�

p
3 3

p
3 �-B. K atoms are gray, Si atoms are

white, and B atoms are black. The hexagon outlines the u
cell, and X’s denote Si dangling-bond orbitals.
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was then deposited onto this insulating substrate until the
saturation coverage was reached.

To determine the equilibrium structure of K�Si-B, we
have performed extensive LDA calculations. The calcu-
lations used a slab geometry with six double layers of Si,
terminated by H, and a vacuum region equivalent to three
double layers of Si. Total energies and forces were cal-
culated using Hamann and Troullier-Martins pseudopo-
tentials, and a plane-wave basis with a kinetic-energy
cutoff of 20 Ry, as implemented in the FHI96MD code [8].
Six irreducible k points were used for Brillouin-zone inte-
grations. Full structural relaxation was performed on all
atoms, except those in the bottom-most double layer, un-
til the rms force was less than 0.05 eV�Å. We began by
first fully relaxing the surface without K present, and then
proceeded to determine the equilibrium coverage and ge-
ometry of the K-saturated surface.

Experimentally, coverage is monitored via the elec-
tron work function: At the saturation coverage, the low-
temperature work function reaches a minimum [6]. The
absolute K coverage is not known from experiment, so it
must be determined theoretically. We calculated the work
function for the lowest-energy arrangement of adsorbates
at coverages of 1�6, 1�3, 2�3, and 1 monolayer (ML), and
find a minimum at 1�3 ML, in agreement with the conclu-
sions of Weitering et al. At all coverages, the experimental
photoemission spectra show that the Si adatom backbond
state persists upon K deposition, suggesting the K adsor-
bates do not break the Si adatom bonds [6]. We therefore
assume that at these coverages the adsorbates do not de-
stroy the underlying reconstruction. The resulting mini-
mum energy configuration at the saturation coverage of
1�3 ML is shown in Fig. 1. The K adsorbates are in the
H3 hollow site, with the Si adatom slightly shifted from its
position with no K present. A metastable state with the K
adsorbate in the T4 hollow site has an energy 0.1 eV higher
per unit cell.

At coverages below 2�3 ML, one expects the K 4s
electrons to partially occupy the surface state arising from
the empty Si-adatom orbitals. At 1�3 ML there is one K
per Si orbital, so in the band description the single surface
band is half occupied; this simple picture is confirmed
by the calculated LDA band structure shown in Fig. 2.
Clearly, this system must be metallic within band theory.
To investigate the importance of electronic interactions
not included in band theory, we derive a single-band
Hubbard model for the half-filled surface state. The
Hamiltonian is

H �
X
ijs

tijc
y
iscjs 1 U

X
i

ni"ni# , (1)

where c
y
is creates an electron with spin s on site i,

and nis � c
y
iscis is the number operator. The sites

correspond to the empty Si orbitals that the K electrons
are doping. The amplitude for hopping from orbital i to
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FIG. 2. LDA band structure of K�Si-B at the K saturation
coverage of 1�3 ML. The Si-related band crossing the Fermi
level is half occupied by the K 4s electron. The solid curve is
the optimized fit of the mean-field Hubbard dispersion [Eq. (3)],
to the LDA eigenvalues. The inset shows the Brillouin zone of
the fundamental unit cell and of the doubled supercell, used to
compute UK�Si-B.

orbital j is given by tij , and tij � tji . There is a Coulomb
energy cost of U to occupy an orbital with two electrons.

Our approach to determining the parameters of the
Hubbard model is similar to other first-principles ap-
proaches [9,10]. We first solve the Hubbard model in the
mean-field (MF) approximation, and then require that
the resulting single-particle energies optimally reproduce
the corresponding LDA spectrum (which is also a mean-
field theory) throughout the zone. In the MF approxi-
mation, the up electrons move in the average potential
generated by the down electrons (and vice versa), so the
MF Hubbard Hamiltonian for the up electrons becomes

HMF
" �

X
ij

tijc
y
i"cj" 1 U

X
i

ni"�ni#� , (2)

where �ni#� is the average density of the down electrons
on site i. We assume a paramagnetic state in both the
LDA and the MF solution to the Hubbard model.

To determine the hopping amplitudes, tij , we fit the
single-particle eigenvalues in the MF Hubbard solution to
the LDA eigenvalues of the surface band at 100 special
k points. Note that although the K adsorbates break
the threefold rotational symmetry of the substrate, the
LDA band structure remains nearly isotropic, and so we
assume isotropic hopping. We allow hopping between
nearest-neighboring and second-nearest-neighboring sites,
with amplitudes t1 and t2, respectively— third-nearest-
neighbor hopping was found to be insignificant. Thus the
dispersion is given by

´�k� � 2t1�cos�ky� 1 2 cos�kx

p
3�2� cos�ky�2��

1 2t2�cos�kx

p
3� 1 2 cos�kx

p
3�2� cos�3ky�2�� .

(3)

The optimized amplitudes are t1 � 66 meV and t2 �
224 meV. A plot of the fit and the LDA eigenvalues
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along high symmetry directions is shown in Fig. 2; the fit
is very good, with a rms error of 42 meV.

To determine the intraorbital Coulomb repulsion U, we
subject the system to a density fluctuation by moving
charge from one Si orbital to another. The optimal inter-
action parameter, UK�Si-B, is then determined by requir-
ing the LDA solution and the MF Hubbard calculation to
respond identically. In order to maintain overall charge
neutrality, a supercell calculation with two Si orbitals is
required. At the edge of the Brillouin zone, the paramag-
netic single-particle eigenvalues for a shift of dn of an
electron from one orbital to another take the simple form

´6 � 6Udn , (4)

up to an overall constant which we take to be zero. The
fit of ´1 to the LDA eigenvalues is shown in Fig. 3.
For small charge shifts, the LDA eigenvalues are nearly
linear, and we obtain UK�Si-B � 1.16 eV. For larger
charge shifts, additional bands in the LDA calculation
enter that are not present in the single-band Hubbard
model, and the LDA eigenvalues drop very slightly
below the MF Hubbard eigenvalues. As a check of the
reliability of this approach, we also determined UK�Si-B
by fitting the change in the total kinetic energy in the
MF Hubbard solution to the LDA. We find UK�Si-B �
1.2 eV, consistent with the above result.

Having determined the parameters of the Hubbard
model describing K�Si-B, we now solve this model
exactly (using a periodic 16-site cluster) to obtain the
many-body electronic ground state. The number of states
in the Hilbert space grows exponentially with the number
of sites in the cluster: In the Hubbard model, each site
can have zero, one (either up or down), or two electrons,
so the number of basis states in the space of an N-site
system is 4N . The symmetries of the Hamiltonian make
the matrix block diagonal, but with 16 sites the size
of the largest block is still more than 107 3 107 [11].
Conventional algorithms obviously cannot diagonalize
matrices this large, and so we use the Lanczos algorithm

FIG. 3. The single-particle energy ´1 at the edge of the
Brillouin zone (the X point), as a function of the electron
transfer dn. The squares are LDA supercell results; the solid
line is the best fit of Eq. (4) to the LDA results for jdnj # 0.3.
to determine the exact ground state [12]. Storing the
Hamiltonian and three basis vectors in memory on an
IBM SP2 required 64 nodes with 1 Gb memory each; the
computation required about 600 CPU hours.

To distinguish quantitatively between metallic and insu-
lating behavior, we calculate the zero-frequency conduc-
tivity or Drude weight, D, of the many-body ground state.
The Drude weight provides a definitive way to distinguish
metals from insulators irrespective of the applicability of
band theory: In the thermodynamic limit, metals have
nonzero Drude weight, while for insulators D � 0. Kohn
first showed that D may be calculated from the variation
of the ground-state energy with respect to an applied vec-
tor potential [2,3,13,14],

D � ≠2E�≠f2. (5)

We use this technique to determine the Drude weight
of our Hubbard cluster as a function of the interaction
parameter U. The results are shown in Fig. 4. At small
U, the system is in the metallic regime and so D is
large, and it decreases monotonically with increasing U.
D never becomes zero, because only an infinite system
can undergo a true metal-insulator transition. Instead of
a critical interaction strength, our 16-site cluster shows
a transition region in the vicinity of the physically
interesting interaction strengths, near U � 1 eV.

In general, there may be level crossings in the ground
state as a function of U. For our hopping amplitudes, this
is not the case— the ground state evolves adiabatically
with increasing U, and the Drude weight in Fig. 4 is
a continuous function. We see no evidence of the
intermediate (semimetallic) phase that was found in recent
slave-boson studies of the Hubbard model on a triangular
lattice with t2 � 0 [15].

To show that K�Si-B lies on the insulating side of a
Mott-insulator transition, we need the critical interaction
strength for the transition in order to compare with
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FIG. 4. The Drude weight, D, as a function of the interaction
parameter U. The circles are exact results from the Hubbard
model on a 16-site cluster, and the curve is a fit of the Hubbard
results (for U # 0.7 eV) to the infinite limit given by Eq. (6).
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our calculated interaction strength, UK�Si-B. We can
obtain this value by extending our calculated D�U�
from the exact finite-cluster result to the thermodynamic
infinite limit, using the form derived with the Gutzwiller
approximation [1] for the infinite system,

D`�U� ~

Ω
1 2 �U�Uc�2, U , Uc

0, U . Uc ,
(6)

where Uc is the critical interaction strength for the
metal-insulator transition. This functional form fits our
16-site results at small and intermediate values of U
extremely well, as shown in Fig. 4. From this fit, we
estimate the critical interaction strength for the Mott
metal-insulator transition in the infinite system occurs
at Uc � 0.95 6 0.02 eV. Our calculated value for the
physical system, UK�Si-B � 1.16 eV, is above this critical
value, establishing that K�Si-B is indeed a Mott insulator.

The critical interaction strength for the Mott metal-
insulator transition is usually estimated to be Uc � W ,
for bandwidth W [2]. Interestingly, the bandwidth for
K�Si-B is W � 0.61 eV, so our calculated Uc � 0.95 eV
is more than 50% larger than W .

In the Mott-insulating regime, the localized electrons
interact via an antiferromagnetic Heisenberg exchange
coupling with strength Jij � 4t2

ij�U [16]. The nearest-
neighbor Heisenberg model on a triangular lattice is frus-
trated and has strong three-sublattice correlations [17]. In
the Hubbard model for K�Si-B, the second-neighbor hop-
ping is substantial, so the second-neighbor antiferromag-
netic Heisenberg coupling in the Mott-insulating limit will
be significant. This coupling weakens the three-sublattice
correlations, so it is unlikely that three-sublattice order
is established. The ground state will likely either estab-
lish some other type of collinear order [18] or enter a
quantum-disordered regime with no long-range order [2].

In conclusion, we have shown that the many-body
electronic ground state of the K�Si-B surface is a Mott
insulator. Specifically, we have first determined the
surface coverage and morphology of K adsorbed on
Si(111)-B using first-principles total-energy methods. We
then mapped the relevant electronic degrees of freedom
onto a Hubbard model, which we solved with exact
diagonalization. By calculating the Drude weight of
the model, we have demonstrated that, for the physical
parameters of K�Si-B, the model has a Mott insulating
ground state.
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