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Two-Fluid Dynamics for a Bose-Einstein Condensate out of Local Equilibrium
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We extend our recent work on the two-fluid hydrodynamics of a Bose-condensed gas by including
collisions involving both condensate and noncondensate atoms. These collisions are essential for
establishing a state of local thermodynamic equilibrium between the condensate and noncondensate.
Our theory is more general than the usual Landau two-fluid theory, to which it reduces in the appropriate
limit, in that it allows one to describe situations in which a state of complete local equilibrium between
the two components has not been reached. The exchange of atoms between the condensate and
noncondensate is associated with a new relaxational mode of the gas.

PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.Db
Recently, the authors have given a microscopic deriva-
tion of the coupled two-fluid hydrodynamic equations for
a trapped Bose-condensed gas [1]. In the present Letter,
we report the results of a major extension of the Zaremba,
Griffin, and Nikuni (ZGN) [1] work which takes into ac-
count the effects of collisions between the condensate and
noncondensate atoms. These new equations of motion
(which we shall call ZGN0) allow us to discuss the dy-
namics when the noncondensate atoms are in local ther-
mal equilibrium with each other (due to collisions between
the excited atoms) but are not yet in complete equilibrium
with the Bose condensate order parameter. This results in
the appearance of a new relaxational collective mode re-
lated to the transfer of atoms between the condensate and
noncondensate. In order to bring out the new physics in
a clear fashion, these equations are solved for a uniform
gas. A more complete derivation and discussion is given
in Ref. [2].
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The noncondensate atoms are described by the distribu-
tion function f�r, p, t�, which obeys the kinetic equation
(we take h̄ � 1 throughout)

≠f
≠t

1
p
m

? ===f 2 ===U ? ===pf � C12� f� 1 C22� f� ,

(1)

where the effective potential U�r, t� � Uext�r� 1

2g�nc�r, t� 1 ñ�r, t�� involves the self-consistent Hartree-
Fock (HF) mean field. As usual, we treat the interactions
in the s-wave approximation with g � 4pa�m. Here
nc�r, t� is the condensate density and ñ�r, t� is the non-
condensate density given by

ñ�r, t� �
Z dp

�2p�3 f�r, p, t� . (2)

A kinetic equation essentially equivalent to (1) in the case
of a uniform system was given in Refs. [3,4]. The two
collision terms in (1) are given by
C22� f� � 4pg2
Z dp2

�2p�3

Z dp3

�2p�3

Z
dp4 d�p 1 p2 2 p3 2 p4�d� ˜́p 1 ˜́p2 2 ˜́p3 2 ˜́p4�

3 ��1 1 f� �1 1 f2�f3f4 2 ff2�1 1 f3� �1 1 f4�� , (3)

C12� f� � 4pg2nc

Z dp1

�2p�3

Z
dp2

Z
dp3 d�mvc 1 p1 2 p2 2 p3�d�´c 1 ˜́p1 2 ˜́p2 2 ˜́p3�

3 �d�p 2 p1� 2 d�p 2 p2� 2 d�p 2 p3�� ��1 1 f1�f2f3 2 f1�1 1 f2� �1 1 f3�� , (4)
with f � f�r, p, t�, fi � f�r, pi , t�. Equation (4) takes
into account the fact that a condensate atom locally has
energy ´c�r, t� � mc�r, t� 1

1
2my2

c �r, t� and momentum
mvc, where the condensate chemical potential mc and ve-
locity vc will be defined in the next paragraph. On the
other hand, a noncondensate atom locally has the HF en-
ergy ˜́p�r, t� �
p2

2m 1 U�r, t�. This particlelike dispersion
relation means that our analysis is limited to finite tem-
peratures. It follows from this excitation spectrum that in
the Landau limit (see later) of our microscopic model, the
condensate density is equal to the superfluid density and
the noncondensate density is the normal fluid density.
© 1999 The American Physical Society
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The equation of motion for the complex condensate or-
der parameter F�r, t� �

p
nc�r, t� eiu�r,t� can be rewritten

in terms of the condensate density nc�r, t� and the con-
densate velocity vc � ===u�r, t��m as

≠nc

≠t
1 === ? �ncvc� � 2G12� f� , (5a)

m

√
≠

≠t
1 vc ? ===

!
vc � 2===mc , (5b)

where the condensate chemical potential (in the Thomas-
Fermi approximation) is given by

mc�r, t� � Uext�r� 1 g�nc�r, t� 1 2ñ�r, t�� . (6)

The “source” term G12� f� in (5a) is defined in terms of
the C12 collision term in (4) as

G12� f� �
Z dp

�2p�3 C12� f�r, p, t�� . (7)

We observe that C12 collisions do not conserve the
number of atoms in the condensate.

The detailed derivation [2] of Eqs. (1)–(7) is based on
a field-theoretic formulation of an interacting Bose fluid
with a Bose broken symmetry. Closely related work can
be found in Refs. [5,6]. The quantum field operators ĉ�r�
are split into condensate (F � �ĉ�) and noncondensate
(c̃) parts. The key approximation made in obtaining (1)
and (5) is the neglect of the anomalous pair correlations
such as �c̃�r�c̃�r��, which we shall refer to as the Popov
approximation. In [1], the C12 collisions (involving one
condensate atom) were not included and thus the source
term G12 in (5a) was not present. In the extended set of
ZGN0 hydrodynamic equations which follow from (1) and
(5), G12 plays a crucial role. Above the Bose-Einstein
transition temperature (TBEC), the kinetic equation (1)
involves only the Uehling-Uhlenbeck collision term C22
given by (3). This kinetic equation has been discussed
extensively in recent years [7].

In this Letter, we restrict ourselves to the region in
which C22 collisions are sufficiently rapid to justify the
assumption that the excited-atom distribution function is
approximately described by the local equilibrium Bose
distribution

f̃�r, p, t� �
1

eb� 1
2m

�p2mvn�21U2m̃�
2 1

. (8)

Here, the temperature parameter b, normal fluid velocity
vn, chemical potential m̃, and mean field U are all functions
of r and t. It is important to appreciate that the local
noncondensate chemical potential m̃ which appears in (8)
is distinct from the local condensate chemical potential
mc, as defined in (6). One may immediately verify that
f̃ satisfies C22� f̃� � 0, independent of the value of m̃. In
contrast, one finds from (4) that, in general, C12� f̃� fi 0.
This means that even if the excited atoms are in dynamic
local equilibrium described by (8), the source term G12� f�
in (5) will, in general, be finite. More specifically, we have
(see also Ref. [5])

G12� f̃� � 2	1 2 e2b�m̃2 1
2
m�vn2vc�22mc�


nc

t12
, (9)

where we have introduced a collision time associated with
the C12 term in (4),

1
t12

� 4pg2
Z dp1

�2p�3

Z dp2

�2p�3

Z
dp3�1 1 f̃1�f̃2f̃3

3 d�mvc 1 p1 2 p2 2 p3�

3 d�´c 1 ˜́p1 2 ˜́p2 2 ˜́p3� . (10)
We note that G12� f̃� in (9) vanishes when m̃ � mc 1
1
2m�vn 2 vc�2. However, as we shall see, a state of
complete local equilibrium cannot be treated simply by
setting G12 � 0, which was the implicit assumption made
in deriving the Landau two-fluid equations in earlier work
[1,4].

With the assumption f � f̃, one can derive hydrody-
namic equations for the noncondensate by taking moments
of (1) in the usual way. These are the analog of the conden-
sate equations in (5). Linearizing around the static ther-
mal equilibrium solutions, these hydrodynamic equations
are given by

≠dñ
≠t

� 2=== ? �ñ0dvn� 1 dG12 , (11a)

mñ0
≠dvn

≠t
� 2===dP̃ 2 dñ===U0

2 2gñ0===�dñ 1 dnc� , (11b)
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2
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gnc0dG12 . (11c)

One also has

ñ�r, t� �
Z dp

�2p�3 f̃�r, p, t� �
1

L3 g3�2�z� , (12)

P̃�r, t� �
Z dp

�2p�3

p2

3m
f̃�r, p, t�jvn�0

�
1

bL3 g5�2�z� , (13)

where z � eb�m̃2U� is the local fugacity, L �p
2p�mkBT is the local thermal de Broglie wave-

length, and gn�z� �
P`

l�1 zl�ln. In static equilibrium
(denoted by 0), we of course have vn0 � vc0 � 0 and
mc0 � m̃0. Thus it follows that G12� f̃0� � 0. The
analogous linearized condensate equations of motion are

≠dnc

≠t
� 2=== ? �nc0dvc� 2 dG12 , (14a)

m
≠dvc

≠t
� 2g===�dnc 1 2dñ� . (14b)

Finally, the source term dG12 in these equations can be
expressed in terms of the fluctuation in the chemical
potential difference mdiff � m̃ 2 mc,

dG12 � 2
b0nc0

t
0
12

dmdiff , (15)
11
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where t
0
12 is the equilibrium collision time obtained from

(10) with vc � 0, ´c � mc0, and f̃ is the static equilibrium
Bose distribution. We note that adding (11a) and (14a)
gives the usual continuity equation for the total density.

We now turn to a discussion of our linearized hydrody-
namic equations given by (11)–(15) for a uniform Bose-
condensed gas [Uext�r� � 0]. One can then reduce our
two-fluid equations to three coupled equations of motion
for the three variables dvc, dvn, and dmdiff [2]:

m
≠2dvc

≠t2 � gnc0===�=== ? dvc� 1 2gñ0===�=== ? dvn�

1
b0gnc0

t
0
12

dmdiff , (16a)

m
≠2dvn

≠t2 �

√
5P̃0

3ñ0
1 2gñ0

!
===�=== ? dvn�

1 2gnc0===�=== ? dvc�

2
2nc0

3ñ0

b0gnc0

t
0
12

===dmdiff , (16b)
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� gnc0

√
2
3

=== ? dvn 2 === ? dvs

!

2
dmdiff

tm

. (16c)
12
Here the relaxation time for the chemical potential dif-
ference (mdiff) due to C12 collisions between the con-
densate and noncondensate atoms is given by the expres-
sion [2]

1
tm

�
b0gnc0

t
0
12

√ 5
2 P̃0 1 2gñ0nc0 1

2
3 g̃0gn2

c0
5
2 g̃0P̃0 2

3
2gñ2

0

2 1

!
,

(17)

where we have introduced the dimensionless function
g̃0 � �gb0�L

3
0�g1�2�z0�. If we simply omit the terms

involving dmdiff in (16a) and (16b), we are left with
the two coupled ZGN equations for dvn and dvc given
in Ref. [8]. We see that our new generalized ZGN0

equations give rise to a coupling between dvn and
dvc and the local variable dmdiff, which describes the
relative fluctuation in the chemical potentials of the two
components.

To solve the coupled equations in (16) we introduce
velocity potentials dvc � ===fc and dvn � ===fn, and look
for plane wave solutions. We obtain from (16c)

�1 2 ivtm�dmdiff � gnc0tm

√
fc 2

2
3

fn

!
k2. (18)

Inserting this expression into (16a) and (16b) gives two
coupled equations for fn and fc,
mv2fc � gnc0

"
1 2

b0gnc0tm

t
0
12�1 2 ivtm�

#
k2fc 1 2gñ0

"
1 1

b0gnc0tm

3t
0
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ñ0

#
k2fn , (19a)
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9t
0
12�1 2 ivtm�
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ñ0

#
k2fn . (19b)
Taking the limit vtm ¿ 1, one finds that dmdiff is
decoupled from the velocity potentials fc,n and we
recover the ZGN results [8]. As expected, in the extreme
limit vtm ¿ 1, the effect of C12 collisions are negligible
and one can simply omit G12.

In the opposite limit vtm ! 0, the equations in (19)
yield two phononlike solutions, v1,2 � u1,2k, where the
velocities are given by the roots of the equation u4 2

Au2 1 B � 0. It can be shown that the coefficients
A and B are in exact agreement with the analogous
coefficients obtained from the usual Landau two-fluid
equations [8,9]. The latter theory uses quite different
thermodynamic variables from those used in the present
formulation, and the explicit proof of this equivalence
requires a lengthy (but straightforward) calculation. It
also turns out that the first and second sound velocities
(u1 and u2) given by these results (valid for vtm ø 1)
are numerically very close to the velocities given by the
ZGN approximation (valid for vtm ¿ 1). The small
differences involve terms of order g2 and thus were not
picked up in the comparison given in Ref. [8].

The interesting feature of the linearized ZGN0 equations
in (18) and (19) is the existence of a new mode, associated
with the two components being out of local equilibrium
(dmc fi dm̃). To a good approximation (and exact in
the k ! 0 limit), it corresponds to a mode in which
dvn � dvc � 0, with a frequency given by v � 2i�tm.
In the ZGN limit (C12 � 0), this reduces to a zero
frequency mode. In the Landau limit (C12 large), it is
a heavily damped relaxational mode. According to (19),
this equilibration process also gives rise to a damping
of second sound whose magnitude relative to the mode
frequency is peaked at vtm � 1.

In Fig. 1, we plot the reciprocals of various relaxation
times involved in our linearized ZGN0 equations, as a
function of temperature. We note that t

0
12 goes to zero

at TBEC and is much smaller than the mean collision
time expected for a Maxwell-Boltzmann gas. The extra
factors multiplying 1�t

0
12 in (17) ensure that 1�tm starts

to decrease as we approach TBEC from below. This is
the expected “critical slowing down” seen in all second
order phase transitions involving an order parameter. Our
HF mean-field approximation is inadequate in the critical
region close to TBEC and leads to a spurious finite limiting
value of nc0 at TBEC [8]. This removes the divergence in
1�t

0
12, which is also why tm in Fig. 1 is finite at TBEC. If

we simply put nc0 � 0 in our calculations, we would find
that both tm and 1�t

0
12 would diverge at TBEC.
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FIG. 1. Various collision and relaxation times for a uniform
Bose gas as a function of temperature, for gn � 0.1kBTBEC.
The values are normalized to the classical collision time t

21
cl �

ns�16kBT�pm�1�2 at T � TBEC, obtained from (20) using a
Maxwell-Boltzmann distribution for f. Here, s � 8pa2 is the
atomic cross section. The temperature scale changes abruptly
above TBEC. The present calculations are not valid in the very-
low-temperature region.

Our discussion in the present Letter is based on the as-
sumption that C22 collisions produce the local equilibrium
distribution f̃ in (8). As a result, our hydrodynamic equa-
tions (11) do not explicitly depend on a relaxation time
associated with C22. This could be included using the
standard Chapman-Enskog approach to deal with the de-
viation of f from the local equilibrium function f̃ [4,10].
However, an estimate of the collision time associated with
C22 is given by the scattering out term in (3),

1

t
0
22

�
4pg2

ñ0

Z dp1

�2p�3

Z dp2

�2p�3

Z dp3

�2p�3

Z
dp4

3 d�p1 1 p2 2 p3 2 p4�

3 d� ˜́p1 1 ˜́p2 2 ˜́p3 2 ˜́p4�

3 f̃0
1 f̃0

2 �1 1 f̃0
3 � �1 1 f̃0

4 � . (20)

This collision time is plotted in Fig. 1, both above and
below TBEC. The fact that t

0
22 ø tm at temperatures

T * 0.8TBEC is very important, since it allows for the
possibility that the noncondensate atoms are in local
equilibrium with each other but not with the condensate.
Above the transition, the value for t

0
22 we obtain is

in close agreement with the collision time obtained in
Ref. [7].

These results for the relaxation times are quite inter-
esting in their own right. The divergence at TBEC (see
above remarks) is a consequence of the Bose distribu-
tion function being used for f̃0

i in (10) and (20). If a
Maxwell-Boltzmann distribution function were used, the
enhancement shown in Fig. 1 is absent (the importance of
calculating collision times using the correct Bose distribu-
tion has also been noted in Ref. [5]). Moreover, we see
that one should not use the classical gas approximation for
the collision times when determining the crossover from
a collisionless (or mean-field) to hydrodynamic regimes.
The results in Fig. 1 imply that the hydrodynamic domain
is much easier to reach at finite temperatures than might
have been expected, since the collision time can be much
smaller than the analogous classical gas collision time.

In summary, starting from a microscopic model, we
find that the dynamics of a Bose-condensed gas at finite
temperatures can be divided into three distinct regimes:
(i) The collisionless regime in which no collision terms are
included in the kinetic equation (C12 � C22 � 0). (ii) An
intermediate regime in which C22 collisions between the
excited atoms establish local thermal equilibrium (vt

0
22 ø

1) but the C12 collisions do not keep the condensate in
equilibrium with the noncondensate [3,11]. The relaxation
time tm for this equilibration can be much larger than
the collision time t

0
22 for reaching local equilibrium in

the noncondensate (see Fig. 1). (iii) The third regime
is the complete local equilibrium of the condensate and
noncondensate, which arises in the limit vtm ø 1. In this
limit, the ZGN0 equations exactly reproduce the results of
the Landau two-fluid equations [8,9].
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