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Bell Inequalities for Entangled Pairs of Neutral Kaons
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We extend the use of Bell inequalities to F ! K0K̄0 decays by exploiting analogies and differences
to the well-known and experimentally verified singlet-spin case. Contrasting with other analyses, our
Bell inequalities are violated by quantum mechanics and can strictly be derived from local realistic
theories. In principle, quantum mechanics could then be tested using unstable, oscillating states
governed by a CP-violating Hamiltonian.
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Quantum entanglement, as shown by the separate parts
of nonfactorizable composite systems, is an extremely
peculiar feature of quantum mechanics to which much
attention has been devoted. Since the paper by Ein-
stein, Podolsky, and Rosen (EPR) [1], quantum entangle-
ment has been also a continuous source of speculations
on the “spooky action-at-a-distance,” better characterized
as nonlocality in the correlations of an EPR pair [2].
Well-known and useful tools to probe into this non-
locality are the original Bell inequalities [3] and their
reformulated versions [4,5], as reviewed, for instance,
in [6,7].

Bell inequalities have been subjected to experimen-
tal tests with the general outcome that they are violated
[8,9]; i.e., local realistic theories fail and nature is indeed
nonlocal. However, possible loopholes in the tests have
been pointed out [10]. There is therefore a continuous
interest to test Bell inequalities in different experiments
and, more importantly, in different branches of physics.
One such possible place is an e1e2 machine copiously
producing EPR-entangled K0K̄0 pairs through the reac-
tion e1e2 ! F ! K0K̄0. Such a F or “entanglement”
factory, DaFne, will be soon operating in Frascati [11].
Because of the negative charge conjugation of the F me-
son, the EPR entanglement of the neutral kaon pair can be
explicitly written as
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jF�0�� �
1
p

2
�jK0� ≠ jK̄0� 2 jK̄0� ≠ jK0�� . (1)

Starting with this initial state, the two neutral kaons—
denoted by the kets at the left and right hand sides of the
direct product symbol ≠ in (1)—fly apart thus defining
after collimation a left and a right hand kaon beam. Their
time evolution is given by (see Appendix and [12])

jF�t�� �
N�t�
p

2
�jKS� ≠ jKL� 2 jKL� ≠ jKS�� (2)

with jN�t�j � �1 1 jej2���j1 2 e2j� 3 e2 1
2

�GS1GL�t re-
flecting the extinction of the beams via weak kaon
decays but without modifying the perfect antisymmetry
of the initial state. This is then in close analogy to
the singlet-spin state usually considered in the Bohm
reformulation of the EPR configuration (EPRB). But
there is also a substantial difference: while most of the
experimental tests favoring quantum nonlocality have
been successfully performed in the EPRB configuration,
early [13,14] and more recent [15,16] attempts to check
similar Bell inequalities in e1e2 ! F ! K0K̄0 either
fail in showing their violation by quantum mechanics or
seem to be affected by serious difficulties (see below and
[17]). Our purpose in this Letter is to fill this gap by
© 1999 The American Physical Society 1
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exploiting the analogies between the F ! K0K̄0 and the
singlet EPRB cases.

In the well-known EPRB configuration one deals with
the singlet state

j0, 0� �
1
p

2
�j1� ≠ j2� 2 j2� ≠ j1�� , (3)

i.e., an antisymmetric system consisting of two separating
components, exactly as in Eq. (1). Also, each one of
these two components (say, electrons) is assumed to
have spin- 1

2 thus belonging to a dimension-two Hilbert
space with basis vectors j1� and j2�, in close analogy
to the basis vectors jK0� and jK̄0� in Eq. (1). In the
EPRB configuration, the experimentalist is supposed to
be able to measure at will the spin components along
different directions in both beams, as explicitly required to
derive Bell inequalities in local realistic contexts. More
precisely, we assume that on the left (right) beam one
can adjust these measurement directions either along a or
along a0 (b or b0). In the appropriate units, the outcomes
of these measurements are simply 6 signs, i.e., si � 6

for i � a, a0, b, b0. The probability to obtain specific
outcomes (say, sa and sb) when measuring along given
directions (say, a on the left and b on the right) will be
denoted by P�a, sa; b, sb� and by similar expressions for
alternative outcomes and orientations.

In the context of quantum mechanics, all these proba-
bilities can be unambiguously computed. For the singlet
state one obtains

P�a, 1; b, 1� � P�a, 2; b, 2� �
1
4

�1 2 cosuab�

�
1
2

sin2�uab�2� ,

P�a, 1; b, 2� � P�a, 2; b, 1� �
1
4

�1 1 cosuab�
(4)

�
1
2

cos2�uab�2� ,

where uab is the angle between a and b. In the context
of local realistic theories, rather than explicitly computing
probabilities, one can establish several Bell inequalities
to be satisfied by these probabilities in alternative experi-
mental setups,

P�a, 1; b, 1� # P�a, 1; c, sc� 1 P�c, sc; b, 1� , (5)

where sc can be either 1 or 2 and c stands for a given
direction common to both left (c � a0) and right (c � b0)
hand sides. This is the Wigner version of the Bell inequal-
ity and can easily be derived (for details, see [5,6,15])
for deterministic, local hidden-variable theories. It holds
for the most interesting case in which one has spacelike
separation between the left and right spin-measurement
events. This is simply achieved working in a symmetric
configuration, i.e., placing the detectors at equal (time-
of-flight) distances from the origin. Bell’s theorem then
2

establishes the incompatibility between these theories and
quantum mechanics by simply proving that the probabili-
ties in Eq. (4) can violate the Wigner inequality (5).

Before entering into this violation, let us reformulate
our simple EPRB analysis in a slightly different configura-
tion. Assume now that the experimentalist is constrained
to measure spin projections of the spin- 1

2 particles along a
single and fixed direction common to both left and right
hand beams (say, the vertical or z direction). All the dis-
cussion of the previous paragraph can be maintained if the
experimentalist is allowed to introduce magnetic field(s)
along the electron path(s). Indeed, if the magnetic field
B is adjusted to produce a rotation of the spinor around
the propagation axis of angle uab � uB � vBDt on only
one of the two electrons, then the same expressions (4) are
the correct quantum mechanical predictions for the differ-
ent probabilities to measure the left and right vertical spin
components. This can be immediately seen substituting
the effects of the rotation,

j1� ! cos�uab�2� j1� 1 sin�uab�2� j2� ,

j2� ! cos�uab�2� j2� 2 sin�uab�2� j1� ,
(6)

in the second kets (say) of Eq. (3). One then finds

j0, 0� !
1
p

2
�cos�uab�2� �j1� ≠ j2� 2 j2� ≠ j1��

2 sin�uab�2� �j1� ≠ j1� 1 j2� ≠ j2��� ,

(7)

thus recovering the quantum mechanical probabilities in
Eq. (4):

P�0, 1; B, 1� � P�0, 2; B, 2� �
1
4

�1 2 cosuB�

�
1
2

sin2�uB�2�

P�0, 1; B, 2� � P�0, 2; B, 1� �
1
4

�1 1 cosuB�
(8)

�
1
2

cos2�uB�2� ,

with a new notation indicating explicitly the presence of
the magnetic field B on the right and its absence on the
left. In the context of local realistic theories, two Wigner
inequalities (5) can be derived,

P�0, 1; 2B, 1� # P�0, 1; B, 1� 1 P�B, 1; 2B, 1� ,

P�0, 1; 2B, 1� # P�0, 1; B, 2� 1 P�B, 2; 2B, 1� .
(9)

The first (second) inequality implies 1
2 sin2�uB� #

sin2�uB�2� � 1
2 cos2�uB� # cos2�uB�2�� and is violated for

rotation angles 0± , uB , 90± �128± � cos21�1�2 2p
5�2� , uB , 180±�. Care has to be taken, however,

to concentrate the magnetic field in a small region just
before detection in such a way that the spin-measurement
event on the left is spacelike separated from the whole
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rotation interval Dt and spin measurement on the right.
A tiny violation of the first inequality (9) persists even for
small values of uB.

We now turn to the F ! K0K̄0 case, where one
is really constrained to the situation of the preceding
paragraph. Indeed, only the two basis states jK0� and jK̄0�
can be unambiguously identified on both sides by means
of their distinct strangeness-conserving strong interactions
on nucleons (see [14]; see also [17] for a discussion on
this issue). One then needs to mimic the preceding effects
of an adjustable magnetic field. A thin, homogeneous slab
of ordinary (nucleonic) matter placed just before one of
the two K0K̄0 detectors will do the job. The effects of
this slab—a neutral kaon regenerator with regeneration
parameter r —on the entering, freely propagating jKS�L�
states are (see Appendix)

jKS� ! jKS� 1 rjKL� ,

jKL� ! jKL� 1 rjKS� ,
(10)

where only first order terms in the (small) parameter r
have been kept. Notice the strong similarity between
r � �imS 2 imL 1

1
2GS 2

1
2GL� 3 rDt and the pre-

vious uB � vBDt � �geh̄�2m� 3 BDt in that both
expressions contain a first factor characterizing the propa-
gating particles times a second one allowing for different
choices of external intervention. But notice also that the
transformation (10) with a complex r is not a true rotation
in contrast to (6). Introducing the regenerator on the right
beam, as before, and finally reverting to the K0K̄0 basis,
Eq. (2) becomes

jF�0�� ! jF�t�� �
1
p

2
e2i�lS1lL�t

3 ��1 2 r� jK0� ≠ jK̄0�

2 �1 1 r� jK̄0� ≠ jK0�� . (11)

As in the spin case, the antisymmetry of the initial state
has been lost although not in the same way, as expected
from the differences between (6) and (10).

In the context of quantum mechanics one can unam-
biguously compute the detection probabilities by simply
projecting Eq. (11) over the appropriate states

P�0, K0; r , K̄0� � P�r , K̄0; 0, K0�

� e2�GS1GL�t�1�2 2 Re�r�� ,

P�0, K̄0; r , K0� � P�r , K0; 0, K̄0�

� e2�GS1GL�t�1�2 1 Re�r�� ,
(12)

P�0, K̄0; r , K̄0� � P�r , K̄0; 0, K̄0� � 0 ,

P�0, K0; r , K0� � P�r , K0; 0, K0� � 0 ,

where the left equalities are an obvious consequence of
rotation invariance and the approximated ones in the right
are valid at first order in r . The notation follows closely
that in Eq. (8) with the K0 or K̄0 indicating the outcome
of the measurement and r or 0 indicating the presence or
absence of the regenerator. Under the same conditions
as before, one can now invoke local realistic theories to
establish Wigner inequalities such as

P�0, K0; 0, K̄0� # P�0, K0; r , K0�

1 P�r , K0; 0, K̄0� ,

P�0, K0; 0, K̄0� # P�0, K0; r , K̄0�
(13)

1 P�r , K̄0; 0, K̄0� .

The incompatibility between quantum mechanics and
local realism appears when introducing the probabilities
(12) in (13): the first inequality leads to 1 # 1 1 2 Re�r�,
while the second one leads to 1 # 1 2 2 Re�r�. Hence,
in any case (i.e., independently of the specific properties
of the regenerator) one of the Wigner inequalities (13)
is violated by quantum mechanics. According to the
detailed analysis by Di Domenico [15], detection of such
a violation is feasible even in this simplest version of
the experiment involving thin regenerators which are
only a few millimeters thick. For usual materials this
implies 2jRe�r�j � 1022 [15] and thus violation of the
inequality by some 1%. Because of the high kaon
detection efficiency [18] and the high luminosity of F

factories like DaFne (around 1010 neutral-kaon pairs will
be yearly produced quite soon [11]) the required accuracy
does not seem to escape present day capabilities even
for this simplest version of the experiment [19]. In
our case, however, thicker regenerators can be used (as
suggested by Eberhard [16] for asymmetric F factories)
thus enlarging the effect but requiring a more involved
theoretical treatment (now in progress).

These results contrast with the previously mentioned
ones coming from early attempts to check local realistic
theories in e1e2 ! F ! K0K̄0 [13,14], where interest-
ing Bell inequalities involving different K0K̄0 detection
times were proposed. Choosing among these different
times entails the required active intervention of the ex-
perimentalist (as particularly emphasized in [20]), but the
inequalities so derived failed in showing their violation
by quantum mechanics due to the specific values of kaon
masses and widths. More recently, there has been a re-
newed interest in this subject [15,16] but, in spite of
several claims, we believe that the proposed Bell inequal-
ities do not follow strictly from local realism. Indeed,
detection of kaonic states other than K0, K̄0 is required
and their identification via their associated decay modes
is proposed (see [17] for details). But the simple obser-
vation and counting of these decay events offer no option
for an active intervention of the experimentalist, as re-
quired to establish these inequalities in a local realistic
context. This clearly contrasts with our proposal, where
3



VOLUME 83, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JULY 1999
freely adjustable regenerators are involved in alternative
experimental setups. Finally, we emphasize that in spite
of certain analogies the K0-K̄0 system displays interesting
differences as compared to the usually considered pho-
tons or electrons. Indeed, the K0-K̄0 system has some
unique and peculiar quantum mechanical properties: it is
unique as it is the only place in nature where CP viola-
tion has been detected so far; it is peculiar since the mass
eigenstates are unstable and manifest K0K̄0 oscillations in
space-time. This could add some relevance to our results.
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and Programa de Apoio a Núcleos de Excelência
(PRONEX), and by the EURODAPHNE EEC-TMR Pro-
gram No. CT98-0169. Discussions with R. Muñoz-Tapia
and E. Santos are also acknowledged.

Appendix.—We define the CP � 61 eigenstates
K1�2 by jK1�2� �

1
p

2
�jK0� 6 jK̄0��. The mass eigenstates

KS�L in terms of K1�2 and the CP violation parameter
e are

jKS� �
1

p
1 1 jej2

�jK1� 1 ejK2�� ,

jKL� �
1

p
1 1 jej2

�jK2� 1 ejK1�� .
(14)

The time development of these nonoscillating mass eigen-
states is given by jKS�L�t�� � e2ilS�Lt jKS�L�, with lS�L �
mS�L 2

i
2GS�L, and mS�L and GS�L being the mass and

width of KS and KL, respectively.
For kaon regeneration in homogeneous nucleonic media

we follow [15], [21], and [22]. The eigenstates of the
mass matrix inside matter are

jK 0
S� � jKS� 2 � jKL� ,

jK 0
L� � jKL� 1 � jKS� ,

(15)

where only first order terms in � have been retained.
This regeneration parameter is � � pn� f 2 f̄��mK 3

�lS 2 lL�, where mK � �mS 1 mL��2, f� f̄� is the for-
ward scattering amplitude for K0�K̄0� on nucleons and
n is the nucleonic density. The time evolution inside
matter for the eigenstates jK 0

S�L� follows the standard ex-

ponential form, jK 0
S�L�t�� � eil0

S�LtjK 0
S�L�, where l

0
S�L �

lS�L 2 pn� f 1 f̄��mK 1 O ��2�. To compute the net
effect of a thin regenerator slab over the entering jKS�L�
states one simply expresses these states in the jK 0

S�L� ba-
sis using (15), introduces their time evolution in Dt, and
reverts to the initial jKS�L� basis (see, for instance, [15]
and [22]). One finds

jKS� ! e2il0
SDt�jKS� 1 i��l0

S 2 l0
L�DtjKL��

� jKS� 1 rjKL� ,

jKL� ! e2il0
LDt�jKL� 1 i��l0

S 2 l0
L�DtjKS��

(16)

� jKL� 1 rjKS� ,
4

where Dt is short enough to justify the systematic use
of first order approximations. Equation (16) defines the
parameter r entering Eqs. (10)–(13); in a first approxi-
mation we have r � i�lS 2 lL� 3 rDt, as quoted in
the main text. Appropriate values for r can be adjusted
choosing among different materials �r� and their thick-
ness �Dt�.
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