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Singularities and Pseudogaps in the Density of States of Peierls Chains
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We develop a nonperturbative method to calculate the density of states (DOS)rsvd of the fluctuating
gap model describing the low-energy physics of electrons on a disordered Peierls chain. For
order parameter field we calculaters0d (i.e., the DOS at the Fermi energy)exactly as a functional
of the disorder for a chain of finite lengthL. Averagingrs0d with respect to a Gaussian probability
distribution of the fluctuating Peierls order parameter, we show that forL ! ` the averagekrs0dl
diverges for any finite value of the correlation length above the Peierls transition. Pseudogap be
emerges only if the Peierls order parameter is finite and sufficiently large. [S0031-9007(98)0834

PACS numbers: 71.23.–k, 02.50.Ey, 71.10.Pm
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At low temperatures many quasi-one-dimensional co
ductors become unstable and develop long-range char
density-wave order, i.e., undergo a Peierls transition [1
Within a mean field picture a finite valueD0 of the Peierls
order parameter leads for frequenciesjvj , jD0j to a gap
in the electronic density of states (DOS)rsvd [2]. To
achieve a better understanding of the effect of fluctuatio
on the Peierls transition, Lee, Rice, and Anderson [3] i
troduced the so-called fluctuating gap model (FGM). I
this model the fluctuating part,̃Dsxd ­ Dsxd 2 D0, of the
order parameter is approximated by a Gaussian stocha
process with covariance,

kD̃sxdD̃sx0dl ; Ksx, x0d ­ K0e2jx2x0jyj . (1)

Herek· · ·l denotes averaging over the probability distribu
tion of Dsxd, K0 is a positive constant, andj is the order
parameter correlation length. We assume that the fie
Dsxd is real, corresponding to a charge-density wave th
is commensurate with the lattice.

Twenty years ago Sadovskii [4] found an apparently e
act algorithm to calculate the average DOS of the FGM
His calculations showed that for temperatures above t
Peierls transition, in a regime wherej is large but finite,
the average DOS exhibits a substantial suppression in
vicinity of the Fermi energy, a so-called pseudogap. Th
algorithm constructed by Sadovskii has also been appli
in a different context to explain the weak pseudogap beha
ior in the underdoped cuprates [5]. However, recently
has been pointed out [6,7] that Sadovskii’s algorithm co
tains a subtle flaw and hence does not produce the ex
DOS of the FGM. It is therefore important to compare th
algorithm with limiting cases wherekrsvdl can be calcu-
lated without any approximation.

Besides the limitj ! `, where Sadovskii’s algorithm
is indeed exact [6,7], there exists another nontrivial lim
where the exactkrsvdl is known: If in Eq. (1) we let
j ! 0, K0 ! `, with K0j ! D ­ const, the right-hand
side of Eq. (1) reduces to2Ddsx 2 x0d. As shown by
Ovchinnikov and Erikhman (OE) [8], in the limitL ! `

(where L is the length of the chain) the exactkrsvdl
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can then be obtained from the stationary solution of
Fokker-Planck equation [9]. For smallv and D0 ­ 0,
one finds [8]krsvdl ~ jv ln3 jvjj21. Singularities of this
type at the band center of a random Hamiltonian we
discovered by Dyson [10], and have recently also be
found in one-dimensional spin-gap systems [11,12].
is important to note that in the FGM the singularity is
consequence of the charge conjugation symmetry of
underlying Dirac Hamiltonian, and isnot related to con-
crete probability properties ofDsxd [9,13]. In particular,
the singularity isnotan artifact of the exactly solvable limit
j ! 0 considered by OE [8]. It is therefore reasonable
expect that for anyj , ` the average DOS of the FGM
exhibits a singularity atv ­ 0. This general argument is
in disagreement with Ref. [4], where for large but finitej

a pseudogap (and hence no singularity) has been obtai
In this paper we shall resolve this contradiction by calcula
ing the average DOS at the Fermi energy [i.e.,krsv ­ 0dl]
exactly for arbitraryj.

The local DOSrsx, vd of the FGM for a given realiza-
tion of the disorder can be written as

rsx, vd ­ 2p21 Im Trfs3G sx, x, v 1 i0dg , (2)

where the2 3 2 matrix Green’s functionG satisfies

fi≠x 1 vs3 2 iDsxds2gGsx, x0, vd ­ dsx 2 x0ds0 .
(3)

Heresi are the usual Pauli matrices ands0 is the2 3 2
unit matrix. Note that in Eq. (2) we have factored out
Pauli matrix s3, so that the differential operatori≠x in
Eq. (3) is proportional to the unit matrix. To solve Eq. (3
we try the ansatz (suppressing for simplicity the frequen
label)

Gsx, x0d ­ UsxdG1sx, x0dU21sx0d , (4)

whereUsxd is an invertible2 3 2 matrix. Equation (4)
resembles the transformation law of thecomparator in
non-Abelian gauge theories [14]. In fact, Eq. (4) can b
viewed as a gauge transformation which generalizes
Schwinger ansatz [15] to the non-Abelian case. It is ea
© 1999 The American Physical Society
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to show that the solution of Eq. (3) can indeed be writte
in the form (4) providedG1 andU satisfy

fi≠x 1 vs3gG1sx, x0d ­ dsx 2 x0ds0 , (5)

i≠xUsxd ­ vfUsxds3 2 s3Usxdg 1 iDsxds2Usxd .
(6)

Equation (5) defines the Green’s function of free fermion
and can be solved trivially via Fourier transformation. Th
difficult part of the calculation is the solution of the matrix
equation (6). We parametrizeUsxd as follows:

Usxd ­ eiF1sxds2 eiF2sxds1eiF3sxds3 , (7)

where s6 ­ 1
2 fs1 6 is2g, and the functionsF6sxd,

F3sxd have to be chosen such thatUsxd satisfies Eq. (6).
A parametrization similar to Eq. (7) has recently bee
used by Schopohl [16] to study the Eilenberger equatio
of superconductivity. We find that the ansatz (7) solve
Eq. (6) if F6sxd andF3sxd satisfy

≠xF1 ­ 22ivF1 1 Dsxd f1 2 F2
1g , (8a)

≠xF2 ­ 2ivF2 2 Dsxd f1 2 2F1F2g , (8b)

≠xF3 ­ 2iDsxdF1 . (8c)

Nonlinear differential equations of the type (8a) are calle
Riccati equations. The set of equations obtained
Schopohl [16] has a similar structure but is not identic
to Eqs. (8a)–(8c). Note that Eq. (8a) involves onlyF1.
If we manage to obtain the solutionF1, Eqs. (8b) and
(8c) become simple linear equations which can be solv
exactly. From Eqs. (2), (4), and (7) it is easy to see th
the local DOS can be written as

rsx, vd ­ p21 ReRsx, v 1 i0d, R ­ 1 2 2F1F2 .
(9)

Thus, to calculate the average DOS we have to avera
the productF1F2 over the probability distribution of
the field Dsxd. In the limit where the right-hand side
of Eq. (1) reduces to2Ddsx 2 x0d we can use the fact
that F1 and F2 satisfy first order differential equations
to express the averagekF1F2l in terms of the solution
of two coupled one-dimensional Fokker-Planck equatio
[17]. Thus, our method leads to an algorithm for obtainin
the exactkrsvdl without using the node counting theorem
[9]. However, the Fokker-Planck equation obtained b
OE [8] within the phase formalism [9] is easier to solv
than our system of two coupled Fokker-Planck equation
Hence, ford-function correlated disorder our approac
does not have any practical advantage.

On the other hand, if the disorder is notd-function
correlated, probability distributions of physical quantitie
do not, in general, satisfy Fokker-Planck equations, a
it is not easy to perform controlled calculations or eve
obtain exact results [18]. We now show that for rea
Dsxd the local DOS at the Fermi energy can be calculate
exactly. To derive this result, let us introduce the comple
n
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vector

$c ­

0B@ 2
p

2 s1 2 F1F2dF1

1 2 2F1F2p
2 F2

1CA ;

0B@ Z1

R
Z2

1CA . (10)

Note that by constructionR2 2 2Z1Z2 ­ 1 for all x, and
that according to Eq. (9) the second component of$c is re-
lated to the local DOS. Using Eqs. (8a) and (8b) we fin

≠x
$c ­ 2Hsxd $c , Hsxd ­ 2ivJ3 1 2DsxdJ1 , (11)

whereJi are spinJ ­ 1 operators in the representation

J3 ­

0B@ 1 0 0
0 0 0
0 0 21

1CA, J1 ­
1

p
2

0B@ 0 1 0
1 0 1
0 1 0

1CA . (12)

Equation (11) is a linear multiplicative stochastic diffe
ential equation [18]. Formally, this equation looks lik
the imaginary time Schrödinger equation for aJ ­ 1
quantum spin in a random magnetic field, withx play-
ing the role of imaginary time. Although the operatorH
in Eq. (11) is not Hermitian, we may perform an analyt
continuation to imaginary frequencies (v ­ iE) to obtain
a Hermitian spin Hamiltonian. We thus arrive at the r
markable result that the average DOS of the FGM can
obtained from theaverage state vectorof a J ­ 1 spin
in a random magnetic field. Our nonlinear transformati
(10) is well known in the quantum theory of magnetism
With the formal identificationR ! J3,

p
2 Z6 ! 7J6,p

2 F2 ! by, and
p

2 F1 ! b, Eq. (10) is precisely the
Dyson-Maleev transformation [19], which expresses t
spin operators in terms of boson operatorsb, by.

The solution of Eq. (11) with initial condition$cs0d ­
$c0 is $csxd ­ Ssxd $c0, where theS matrix is

Ssxd ­ T exp

"
2

Z x

0
dx0 Hsx0d

#
. (13)

HereT is the usual time-ordering operator. The prop
choice of boundary conditions requires some care. F
simplicity, let us assume thatDsxd is nonzero only in a fi-
nite interval0 # x # L. Outside this regime we find tha
Z6sxd ­ expf72isv 1 i0d sx 2 x0dgZ6sx0d is the solu-
tion of Eq. (11). Physically it is clear that exponential
growing solutions are forbidden, which requiresZ2s0d ­
Z1sLd ­ 0 and impliesR ­ 1 for x # 0 andx $ L. We
conclude that at the boundaries

$c0 ­

0B@ Z1s0d
1
0

1CA, $csLd ­

0B@ 0
1

Z2sLd

1CA , (14)

where Z1s0d and Z2sLd are determined by$csLd ­
SsLd $c0. This implies Z1s0d ­ 2S12sLdyS11sLd. Be-
cause the matrix elements ofSsLd depend on the disorder
the initial vector $c0 is stochastic. Note that, in textboo
discussions of multiplicative stochastic differential equ
tions, one often assumes deterministic initial conditio
989
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[18]. After simple algebra we obtain for the secon
component of$csxd ­ Ssxd $c0, in the interval0 # x # L,

Rsxd ­ S22sxd 2 S21sxdS12sLdyS11sLd . (15)

In general, we have to rely on approximations to calcula
the time-ordered exponential in Eq. (13). However, the
are two special cases whereSsxd can be calculated exactly
The first is obvious: IfDsxd ­ D0 is independent ofx,
our spin HamiltonianHsxd is constant, so that the time
ordering operator is not necessary. Equation (15) can th
be evaluated exactly for arbitraryL [17]. If we take
the limit L ! ` holding xyL fixed, we recover the well-
known square root singularity at the band edges,

lim
L!`

rsx, vd ­
Qsv2 2 D

2
0d jvj

p

q
v2 2 D

2
0

, 0 , xyL , 1 .

(16)
There exists another, more interesting limit whereSsxd can
be calculated exactly. Obviously, atv ­ 0 thedirection
of the magnetic field in our spin Hamiltonian (11) i
constant. Although in this caseHsxd is x dependent, we
may omit the time-ordering operator in Eq. (13). Afte
straightforward algebra, we obtain from Eq. (15)

Rsxd ­ coshfAsxd 2 Bsxdgy coshfAsxd 1 Bsxdg , (17)

whereAsxd ­
Rx

0 dx0 Dsx0d andBsxd ­
RL

x dx0 Dsx0d. In
Eq. (17) it is understood thatRsxd stands forRsx, i0d,
so thatrsx, 0d ­ p21Rsxd. We have thus succeeded i
calculating the local DOSrsx, v ­ 0d of the FGM at the
Fermi energyfor a given realization of the disorder.The
special symmetries of random Dirac fermions atv ­ 0
have recently been used by Shelton and Tsvelik [20]
calculate the statistics of the corresponding wave functio

To calculate the disorder average of Eq. (17), we intr
ducePsx; a, bd ­ kdsssa 2 Asxdddddsssb 2 Bsxddddl and write

kRsxdl ­
Z `

2`

da
Z `

2`

db Psx; a, bd
coshsa 2 bd
coshsa 1 bd

. (18)

Assuming that the probability distribution ofDsxd is
Gaussian with averageD0 and covarianceKsx, x0d, the
joint distributionPsx; a, bd can be calculated exactly. The
integration over the differencea 2 b in Eq. (18) can then
be performed, and we obtain, for the average local DO
krsx, 0dl ­ p21kRsxdl,

krsx, 0dl ­
easxd

p
p

2ps2

Z `

2`

ds expf2s2ys2s2dg

3
coshfbsxds 1 D0s2x 2 Ldg

coshfs 1 D0Lg
. (19)

Here s2 ­ C1sLd, asxd ­ 2fC1sxdC2sxd 2 C2
3sxdgys2,

andbsxd ­ fC1sxd 2 C2sxdgys2, with

C1sxd ­
Z x

0
dx0

Z x

0
dx00 Ksx0, x00d . (20)

C2sxd is defined by replacing the range of the integrals
Eq. (20) by the intervalfx, Lg, andC3sxd is obtained by
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choosing the intervalf0, xg for thex0 andfx, Lg for thex00

integrations, respectively.
We now specifyKsx, x0d to be of the form (1). Then

s2, asxd, andbsxd are easily calculated. It is convenien
to introduce the dimensionless parametersL̃ ­ 2K0jL,
l ­ jyL, and n ­ D0ys2K0jd. Numerical results for
krsx, 0dl are shown in Fig. 1. Because of symmetry with
respect tox ­ Ly2, the local DOS assumes an extremum
at x ­ Ly2, which in the limit L ! ` approaches either
zero or infinity. Using the fact that atx ­ Ly2 the cosh
in the numerator of Eq. (19) is unity, we obtain

krsLy2, 0dl ­
esL̃y2dfsld

p
p

2ps2

Z `

2`

ds
expf2s2ys2s2dg
coshfs 1 nL̃g

,

(21)

wheres2 ­ L̃f1 2 ls1 2 e21yldg and

fsld ­ 1 2 lf3 2 4e21ys2ld 1 e21ylg . (22)

As shown in Fig. 2,fsld is positive and monotonically
decreasing. Let us first consider the casen ­ 0. This
corresponds to the model discussed by Sadovskii [4] wi
real Dsxd. For L̃ ¿ 1 the s integration in Eq. (21) is
easily done, and we findkrs L

2 , 0dl ~ L̃21y2 expf L̃
2 fsldg.

Keeping in mind that for any finitej the parameterl ­
jyL vanishes forL ! `, it is obvious that in this limit
krsLy2, 0dl is infinite. From Eq. (19) it is easy to show
numerically that this is also true for limL!`krsx, 0dl in the
open interval0 , xyL , 1. We have thus proven that for
L ! ` and arbitraryj , ` the average DOS of the FGM
is infinite at the Fermi energy, in agreement with gener
symmetry arguments [9,13].

For finiten a careful analysis [17] of Eq. (21) shows tha
there exists a critical valuencsld such that forjnj . nc the
local DOSkrsLy2, 0dl scales to zero in the thermodynamic
limit, and a pseudogap emerges. We obtain

ncsld ­ f1 2 ls1 2 e21yldg1y2f fsldg1y2 (23)

(see Fig. 2). Forl ­ 0, Eq. (23) yieldsncs0d ­ 1. At
first sight this seems to contradict the result of OE [8], wh
already found pseudogap behavior forjnj . 1y2. One
should keep in mind, however, that we have setv ­ 0 be-
fore taking the limitL ! `, while in Ref. [8] these limits

FIG. 1. Disorder averagekRsx, i0dl ­ pkrsx, 0dl for L̃ ­ 4
and l ­ 0 as a function ofxyL [see Eq. (19)]. From top to
bottom:n ­ 0, 0.5, 0.75, 1, 1.25, 1.5, 2.
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FIG. 2. Plot offsld andncsld defined in Eqs. (22) and (23).

are taken in the opposite order. The noncommutativity
these limits is well known from the calculation of the loca
DOS of the Tomonaga-Luttinger model with a bounda
[21]. Interestingly, forKsx, x0d ­ 2Ddsx 2 x0d there ex-
ists a regime1y2 , n , 1 where, in the thermodynamic
limit, krsvdl is discontinuous atv ­ 0. This follows
from the fact that according to OEkrsvdl ~ jvj2n21 ! 0
for v ! 0, whereas we have shown thatkrs0dl ­ `. For
n ­ 0 and large but finitej we conjecture that the fre-
quency dependence of limL!`krsvdl is qualitatively simi-
lar to the behavior found by Fabrizio and Mélin [11] fo
random Dirac fermions with a special type of disord
[22]. Specifically, we expect that for frequencies excee
ing a certain crossover frequencyvp the average DOS of
the FGM shows pseudogap behavior, which is correc
predicted by Sadovskii’s algorithm [4]. However, this a
gorithm misses the Dyson singularity, which emerges f
frequenciesjvj & vp for any finite value ofj.

In summary, we have developed a nonperturbati
method to calculate the Green’s function of the FGM
Our main result is the proof of the existence of a singula
ity in krs0dl for any finite value of the correlation length
j as long asDsxd is real andjD0j is sufficiently small.
For D0 ­ 0 we have shown that with open boundary co
ditions krs L

2 , 0dl ~ expfK0jLfsjyLdg, where fs0d ­ 1.
Moreover, if we letL ! ` keepingxyL [ s0, 1d fixed,
krsx, 0dl exhibits a similar singularity [17]. Thus, disor
der pushes states from high energies to the band cen
For finite D0 this effect competes with the suppression
the DOS due to long-range order. In the incommensur
case [whereDsxd is complex and in Eq. (3) we should
replaceis2D ! s1D 2 s2Dp] it is known thatkrs0dl is
finite in the white-noise limit [12,23]. We expect that thi
remains true for arbitraryj. In fact, there exists numerica
evidence that, in the incommensurate case,krsvdl can
be accurately calculated from Sadovskii’s algorithm [24
For a comparison with experiments, one should keep
mind that any violation of the perfect charge conjugatio
symmetry will wash out the singularity atv ­ 0. It is
therefore unlikely that the singularity is visible in realisti
materials, although an enhancement might survive. T
fact that the singular behavior ofkrs0dl in the FGM with
realDsxd is destroyed only ifjnj ­ jD0jys2K0jd exceeds
a finite critical value implies that incommensuratePeierls
of
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chains true pseudogap behavior should emerge gradu
below the Peierls transition when the order parameterD0
is sufficiently large. Lee, Rice, and Anderson [3] came
a similar conclusion within perturbation theory.
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