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Singularities and Pseudogaps in the Density of States of Peierls Chains
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We develop a nonperturbative method to calculate the density of states (@@$pf the fluctuating
gap model describing the low-energy physics of electrons on a disordered Peierls chain. For a real
order parameter field we calculagg0) (i.e., the DOS at the Fermi energgkactly as a functional
of the disorder for a chain of finite length. Averagingp(0) with respect to a Gaussian probability
distribution of the fluctuating Peierls order parameter, we show that.fer « the averagep(0))
diverges for any finite value of the correlation length above the Peierls transition. Pseudogap behavior
emerges only if the Peierls order parameter is finite and sufficiently large. [S0031-9007(98)08349-5]

PACS numbers: 71.23.-k, 02.50.Ey, 71.10.Pm

At low temperatures many quasi-one-dimensional conean then be obtained from the stationary solution of a
ductors become unstable and develop long-range chargBekker-Planck equation [9]. For small and Ag = 0,
density-wave order, i.e., undergo a Peierls transition [1]Jone finds [8Kp(w)) = |w I3 |w||~!. Singularities of this
Within a mean field picture a finite valuly of the Peierls type at the band center of a random Hamiltonian were
order parameter leads for frequencied < |Ag|toagap discovered by Dyson [10], and have recently also been
in the electronic density of states (DOBJw) [2]. To  found in one-dimensional spin-gap systems [11,12]. It
achieve a better understanding of the effect of fluctuationgs important to note that in the FGM the singularity is a
on the Peierls transition, Lee, Rice, and Anderson [3] inconsequence of the charge conjugation symmetry of the
troduced the so-called fluctuating gap model (FGM). Inunderlying Dirac Hamiltonian, and isot related to con-
this model the fluctuating parf(x) = A(x) — Ag, ofthe  crete probability properties ak(x) [9,13]. In particular,
order parameter is approximated by a Gaussian stochastice singularity imotan artifact of the exactly solvable limit

process with covariance, ¢ — 0 considered by OE [8]. Itis therefore reasonable to
S , Ty expect that for any¥ < o« the average DOS of the FGM
(AX)AK)) = K(x,x") = Kge " V¢, (1)  exhibits a singularity at» = 0. This general argument is

in disagreement with Ref. [4], where for large but finite
a pseudogap (and hence no singularity) has been obtained.
this paper we shall resolve this contradiction by calculat-
g the average DOS at the Fermi energy [(g(w = 0))]
xactly for arbitraryé.

The local DOSp (x, w) of the FGM for a given realiza-
on of the disorder can be written as

Here(- - -) denotes averaging over the probability distribu-
tion of A(x), Ky is a positive constant, anflis the order |
parameter correlation length. We assume that the fieI#:
A(x) is real, corresponding to a charge-density wave thaj,
is commensurate with the lattice.

Twenty years ago Sadovskii [4] found an apparently exs;
act algorithm to calculate the average DOS of the FGM.
His calculations showed that for temperatures above the px,w) = —7 ' ImTro3G(x,x,w + i0)], (2)
Peierls transition, in a regime wheégeis large but finite, . , . -
the average DOS exhibits a substantial suppression in thvgzhere the2 X 2 matrix Green's functiorg satisfies
vicinity of the Fermi energy, a so-called pseudogap. The [io, + wo3 — iA(x)0n]G(x,x", w) = 6(x — x')oy.
algorithm constructed by Sadovskii has also been applied 3)
in a different context to explain the weak pseudogap behav-
ior in the underdoped cuprates [5]. However, recently itHere o; are the usual Pauli matrices ang is the2 X 2
has been pointed out [6,7] that Sadovskii’s algorithm conunit matrix. Note that in Eq. (2) we have factored out a
tains a subtle flaw and hence does not produce the exaBguli matrix 3, so that the differential operatap, in
DOS of the FGM. It is therefore important to compare thisEQ. (3) is proportional to the unit matrix. To solve Eq. (3),
algorithm with limiting cases wheré (w)) can be calcu- We try the ansatz (suppressing for simplicity the frequency
lated without any approximation. label)

Besides the limitt — «, where Sadovskii's algorithm N NI T,
is indeed exact [6,7], there exists another nontﬁvial limit Gx.x) = Ux)Gi(x, x)U(x), “)
where the exactp(w)) is known: If in Eq. (1) we let whereU(x) is an invertible2 X 2 matrix. Equation (4)

& — 0, Ky — «, with Ko& — D = const, the right-hand resembles the transformation law of toemparatorin

side of Eq. (1) reduces t®8D56(x — x’). As shown by non-Abelian gauge theories [14]. In fact, Eq. (4) can be
Ovchinnikov and Erikhman (OE) [8], in the limii — «  viewed as a gauge transformation which generalizes the
(where L is the length of the chain) the exah(w))  Schwinger ansatz [15] to the non-Abelian case. It is easy
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to show that the solution of Eq. (3) can indeed be writtenvector
in the form (4) providedj; andU satisfy

[idx + wo3]Gi(x,x") = 8(x — x)oo, ®) g = 1 — 20, D R |. (10

2d_ Z_
i0,U(x) = w[Ux)oz — o3U(x)] + iAx)orU(x). V2
(6)  Note that by constructioR> — 2Z.Z_ = 1 for all x, and

: . , ; . that according to Eq. (9) the second componen}dﬂ re-
Equation (5) defines the Green'’s function of free fermions ) '
and can be solved trivially via Fourier transformation. Thelated to the local DOS. Using Egs. (8a) and (8b) we find

difficult part of the calculation is the solution of the matrix axlz = —H(x)lz, H(x) =2iwJs + 2A(x)J;, (11)
equation (6). We parametriZé(x) as follows:

—V2(1 — d D )D, (z+

whereJ; are spinJ = 1 operators in the representation

U()C) — ei(Ih(x)aLeifbf(x)aqeiq?;(x)tr;’ (7)
| _ 10 0 L (0 10
where o. =3[0y * io»], and the functions®.(x), ;=10 0 o0 |, J,=—=|1 0 1|. (12
®5(x) have to be chosen such thdftx) satisfies Eq. (6). 0 0 —1 V2 01 0

A parametrization similar to Eq. (7) has recently been

used by Schopohl [16] to study the Eilenberger equationgEquation (11) is a linear multiplicative stochastic differ-
of superconductivity. We find that the ansatz (7) solvesntial equation [18]. Formally, this equation looks like
Eq. (6) if ®+(x) andd;(x) satisfy the imaginary time Schrddinger equation forJa= 1
quantum spin in a random magnetic field, withplay-

" _ 2
0xPr = “2i0®y + A1 = @], (82) ing the role of imaginary time. Although the operafar
o B B in Eq. (11) is not Hermitian, we may perform an analytic
0@ = 2i0®- = AW[1 =20, P-], (8b) continuation to imaginary frequencies (= iE) to obtain
9, B3 = —iA(x)D, . (8c) a Hermitian spin Hamiltonian. We thus arrive at the re-

markable result that the average DOS of the FGM can be
Nonlinear differential equations of the type (8a) are callecbbtained from theaverage state vectoof a J = 1 spin
Riccati equations. The set of equations obtained byn a random magnetic field. Our nonlinear transformation
Schopohl [16] has a similar structure but is not identical(10) is well known in the quantum theory of magnetism:
to Egs. (8a)—(8c). Note that Eq. (8a) involves odly.  With the formal identificationR — J5, v2Z+ — +J+,
If we manage to obtain the solutio®, Egs. (8b) and 2d_ — »T, and/2d. — b, Eq. (10) is precisely the
(8c) become simple linear equations which can be solvethyson-Maleev transformation [19], which expresses the
exactly. From Egs. (2), (4), and (7) it is easy to see thaspin operators in terms of boson operatbré*.

the local DOS can be written as _ The solution of Eq. (11) with initial condition(0) =
p(x,w) = 7 'ReR(x,w +i0), R=1-20,®_ . oisx) = S(x)o, where theS matrix is

9 X

®) Sx) = Texp{—f dx’H(x'):|. (13)
Thus, to calculate the average DOS we have to average 0

the product®.. @ over the probability distribution of ere 7 is the usual time-ordering operator. The proper
the field A(x). In the limit where the right-hand side cgice of boundary conditions requires some care. For

of Eq. (1) reduces t@D4(x — x') we can use the fact gmpicity, let us assume that(x) is nonzero only in a fi-
that @, and ®_ satisfy first order differential equations e intervalo = x = L. Outside this regime we find that

to express the avera_g{éu@l,) in terms of the solution Z+(x) = exdF2i(w + i0) (x — x0)]Z+(x0) is the solu-
of two coupled one-dimensional Fokker-Planck equationgjon of Eq. (11). Physically it is clear that exponentially
[17]. Thus, our method Iee_tdsto an algonthm'forobtaunmggrowing solutions are forbidden, which requitgs(0) =
the exactp (w)) without using the node counting theorem Z.(L) = 0 and impliesk = 1forx = 0andx = L. We
[9]. However, the Fokker-Planck equation obtained by.qnclude that at the boundaries
OE [8] within the phase formalism [9] is easier to solve
than our system of two coupled Fokker-Planck equations. Z.(0) 0
Hence, fors-function correlated disorder our approach do = ( 1 ) P(L) = ( 1 ) (14)
does not have any practical advantage. 0 Z_(L)

On the other hand, if the disorder is nétfunction R
correlated, probability distributions of physical quantiteswhere Z,(0) and Z_(L) are determined byy(L) =
do not, in general, satisfy Fokker-Planck equations, and(L). This implies Z,(0) = —S2(L)/S1i(L). Be-
it is not easy to perform controlled calculations or evencause the matrix elements §L) depend on the disorder,
obtain exact results [18]. We now show that for realthe initial vectorys, is stochastic. Note that, in textbook
A(x) the local DOS at the Fermi energy can be calculatedliscussions of multiplicative stochastic differential equa-
exactly. To derive this result, let us introduce the complexions, one often assumes deterministic initial conditions
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[18]. After simple algebra we obtain for the secondchoosing the intervdl, x] for thex” and([x, L] for the x”
component off(x) = S(x)¢y, inthe intervald = x = L,  integrations, respectively.
We now specifyK (x, x) to be of the form (1). Then

R(x) = Sn(x) = S0(0)Sn@)/Su(l).  (15) ;2 4(x), andB(x) are easily calculated. It is convenient
In general, we have to rely on approximations to calculatd® introduce the dimensionless parametérs= 2Ko¢ L,
the time-ordered exponential in Eq. (13). However, there! = £/L, and v = A¢/(2Ko¢). Numerical results for
are two special cases whefér) can be calculated exactly. (P (x.0)) are shown in Fig. 1. Because of symmetry with
The first is obvious: IfA(x) = A, is independent of,  'espect tov = L/2, the local DOS assumes an extremum
our spin Hamiltonian (x) is constant, so that the time- &tx = L/2, which in the limit L. — « approaches either
ordering operator is not necessary. Equation (15) can thef@ro or infinity. Using the fact that at = L/2 the cosh
be evaluated exactly for arbitrarg [17]. If we take In the numerator of Eq. (19) is unity, we obtain

the limit L — o holding x/L fixed, we recover the well- LN e exd—52/(202)]
known square ro(;t s;ng_ulzgl)t)ll alt the band edges, (p(L/2,0)) = iyl ds “costis + vI]
LIerlop(x,w)= @ 0 zw , 0<x/L<1. (21)
my@? = Ag (16) Wheres? = L[1 — A(1 — ¢"/"]and
There exists another, more interesting limit whete) can fA) =1— A3 —4e VO 4 VA1 (22)

be calculated exactly. Obviously, at = 0 the direction

of the magnetic field in our spin Hamiltonian (11) is
constant. Although in this cagé(x) is x dependent, we
may omit the time-ordering operator in Eq. (13). After
straightforward algebra, we obtain from Eq. (15)

As shown in Fig. 2,f(A) is positive and monotonically
decreasing. Let us first consider the case= 0. This
corresponds to the model discussed by Sadovskii [4] with
real A(x). For L > 1 the s integration in Eq. (21) is
easily done, and we findp(%,0)) < L2 exd 5 f(1)].

R(x) = coshA(x) — B(x)]/ coshA(x) + B(x)], (17) Keeping in mind that for any finit¢ the parameten =
whereA(x) = [%dx' A(x') and B(x) = j-L dx' A). I /L vanish_es_ fqr; — o, jt is obvious_that in this limit
Eq. (17) it is understood thak(x) stands forR(x,i0) <p(L/2.’ 0) is |nf|n|f[e._ From Eq. (19.) Itls easy o show
B lthat 5.0 = 7 TR(). We have thus succeédea in nume_ncally that this is also true for lim..{p (x, 0)) in the
calcula{i)ng,the local DO$(x © = 0) of the FGM at the openinterval < x/L < 1. We have thus proven that for

. . S . L — o and arbitrary¢ < o the average DOS of the FGM

Fermi energyfor a given realization of the disorderThe

. . . . is infinite at the Fermi energy, in agreement with general
special symmetries of random Dirac fermionsaat= 0 symmetry arguments [9,13]
have recently been used by Shelton and Tsvelik [20] to For finiter a careful analysis [17] of Eq. (21) shows that

calculate the statistics of the corresponding wave function§here exists a critical value. (1) such that folp| > v, the
> c

To calculate the disorder average of Eq. (17), we intro-I . .
) - . - ; ocal DOS(p(L/2,0)) scales to zero in the thermodynamic
duceP(x;a,b) = (8(a — Ax))8(b — B(x))) and write limit, and a pseudogap emerges. We obtain

®RG) = [ da [ abPlap S g v = [ = A= e PLFOR(29)

cosi{a + b) ) )

) N S ) (see Fig. 2). Fon = 0, Eq. (23) yieldsr.(0) = 1. At
Assuming that the probability distribution OA/(X) IS first sight this seems to contradict the result of OE [8], who
Gaussian with averagd, and covarianceX (x,x'), the  giready found pseudogap behavior fef > 1/2. One
joint distributionP(x; a, b) can be calculated exactly. The ghoyid keep in mind, however, that we haveset 0 be-
integration over the difference — b in Eq. (18) can then fore taking the limitL — o, while in Ref. [8] these limits
be performed, and we obtain, for the average local DOS

(p(x,0) = 7 (R (x)),

ea(x) % 4.0
(p(x,0)) = Py il B ds exd —s*/(20?)] ao |
cosiB(x)s + Ag(2x — L)] = ol
% costis + AgL] (19) =
1.0
Here o = Ci(L), a(x) = 2[Ci(x)Ca(x) — C3(x)]/o?,
andB(x) = [Ci(x) — Ca(x)]/0o?, with 0.0 L T
Ci( :fx /fx " I ‘ . .JZ/L. . .
1(x) dx dx" K(x',x"). (20)
0 0

] ] : ) . FIG. 1. Disorder averagér(x,i0)) = m(p(x,0)) for L = 4
C>(x) is defined by replacing the range of the integrals inand A = 0 as a function ofx/L [see Eq. (19)]. From top to
Eqg. (20) by the intervalx, L], and C3(x) is obtained by bottom:» = 0, 0.5, 0.75, 1, 1.25, 1.5, 2.
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1.0 chains true pseudogap behavior should emerge gradually
\ below the Peierls transition when the order paramater
= \\ - f(’\/z is sufficiently large. Lee, Rice, and Anderson [3] came to
hj os L\ T ve(A) ] a similar conclusion within perturbation theory.
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FIG. 2. Plot off(A) andv.()) defined in Egs. (22) and (23).
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