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Aging in Out-of-Equilibrium Dynamics of Models for Granular Media
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In the framework of recently introduced frustrated lattice gas models, we study the out-of-equilibr
dynamical processes during the compaction in granular media. We find irreversible-reversible cycl
agreement with recent experimental observations, along which we can individuate an equivalent “
transition,” Gg. In analogy with the phenomenology of glassy systems we find aging effects dur
the compaction process. In particular, we find that the two-time density correlation functionCst, t0d
asymptotically scales as a function of the single variable lnst0dy lnstd. [S0031-9007(98)08224-6]

PACS numbers: 45.70.Mg, 05.50.+q, 75.10.Nr, 81.40.Cd
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The experimental study of dynamic processes in gran
lar media [1] has recently revealed the presence of i
teresting behaviors. Under tapping, dry granular med
reach very slowly a more compact state which is we
fitted by a logarithmic relaxation [2]. More recently,
Novak et al. [3] have also shown that such materials ex
hibit nontrivial irreversible-reversible cycles. These phe
nomena stem from slow relaxation processes due to la
“cooperative rearrangements” of many particles. In su
a perspective, granular materials share features of therm
systems, such as glasses or spin glasses, which are
characterized by extremely long relaxation times and t
presence of irreversible-reversible cycles [4,5].

In this paper, in the framework of recently introduce
microscopic models [6–8], we reproduce the irreversibl
reversible cycles of Novaket al. and investigate the
effect of the “cooling” rate on the compaction proces
We find a behavior which is strongly reminiscent o
the phenomenology of the glass transition. Finally, w
study the nonequilibrium time-dependent density-dens
autocorrelation function and find aging effects typical o
glassy systems. These results suggest that similar effe
could also be found in real experiments.

In dynamical processes of granular media a cruci
role is played by geometric frustration (originated b
steric hindrance between interlocked neighboring grain
which induces the necessity of large scale cooperati
rearrangements for relaxation. Based on these conce
two types of frustrated lattice gas models were introduc
[6–8]. Both models showed logarithmic compaction
segregation, and other phenomena typical of granu
media under shaking.

These models consist of a system of particles whic
occupy the sites of a square lattice tilted by 45± (see
Fig. 1). Particles are characterized by an internal degr
of freedom, Si ­ 61, corresponding, for instance, to
two typical orientations of grains on the lattice. Two
nearest-neighbor sites can be occupied only if the partic
have the right reciprocal orientation, so that they do n
overlap, otherwise, due to excluded volume, they have
move away. In the absence of vibrations the particl
0031-9007y99y82(5)y916(4)$15.00
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are subject only to gravity and as they move downwar
they always fulfill the nonoverlap constraint. The effec
of vibration is introduced by allowing the particles to
diffuse with a probabilitypup upwards and a probability
pdown ­ 1 2 pup downwards. An important paramete
governing the dynamics is the adimensional parame
G ; 21y lnsx0d, with x0 ­ pupypdown, which is related
(see below) to the effective temperature of the system a
consequently, plays the same role as the amplitude of
vibration intensity in the experiment of Novaket al. [3].

Such models can be described in terms of the followin
lattice gas Hamiltonian (see [7,8]) in the limitJ ! `:

H ­ J
X
kijl

fijsSi , Sjdninj . (1)

Here ni ­ 0, 1 are occupancy variables,Si ­ 61 are
spin variables associated with the two orientations
the particles,J represents the infinite repulsion felt by
the particles when they have the wrong orientations, a
fijsSi , Sjd ­ 0 or 1 depending whether the configuration
Si , Sj is right (allowed) or wrong (not allowed).

The choice of fijsSi , Sjd depends on the particular
model. The Tetris [8] model is made of elongated pa
ticles (see Fig. 1), which may point in two directions coin
ciding with the two lattice bond orientations. In this cas

FIG. 1. A schematic picture of the two types of frustrate
lattice gas models described in the text. Left: The Tetris mod
Right: The Ising frustrated lattice gas. Solid and dashed lin
represent the two types of interactionseij ­ 61. Filled circles
are the present particles with “orientation”Si ­ 61 (black/
white).
© 1999 The American Physical Society
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fijsSi , Sjd is given byfijsSi , Sjd ­ 1y2fSiSj 2 eijsSi 1

Sjd 1 1g, whereeij ­ 11 for bonds along one direction
of the lattice andeij ­ 21 for bonds on the other. This
Hamiltonian model has an ordered “antiferromagnetic
ground state, and its dynamics has the crucial constra
that particles can flip their “spin” only if three of their
own neighbors are empty.

A real granular system may contain more disorder du
to a wider shape distribution or to the absence of a la
tice. Therefore in a more realistic model the number
internal states isq . 2 (Si ­ 1, 2, . . . , q) and the func-
tion fijsSi , Sjd is zero only for allowed nearest-neighbo
configurations.

However, to simplify the model, the number of state
was still kept atq ­ 2 and the randomness was take
into account by introducing random quenched variabl
corresponding to the freezing of some degree of freedo
in the high density regime. Thus an Ising frustrated lattic
gas model (IFLG) was proposed [7] in whichfijsSi , Sjd
was given byfijsSi , Sjd ­ 1y2seijSiSj 2 1d, and eij ­
61 are quenched random interactions associated with
bonds of the lattice.

The Hamiltonian (1) is without gravity. In the presenc
of gravity there is an extra termg

P
i niyi , where g is

the gravity andyi is the ordinate of the particlei. The
temperatureT is related to the ratiox0 ­ pupypdown via
e22gyT ­ x0 (notice,G ­ Ty2g).

Interesting enough, the two extreme models, the Tet
and the IFLG, show similar behavior. This suggests th
the results found are rather robust and will not depen
much on the details of the model. In particular, under ta
ping they reproduce the logarithmic behavior in agreeme
with the experimental results of Knightet al. [2]. Experi-
mentally a “tap” is the shaking of the container of th
grains by vibrations of given duration and amplitude. I
our Monte Carlo simulations each single tap is realize
by letting the particle diffuse under the gravity by keepin
G ­ const during the time interval of a tapt0 and then
switching off the vibration by settingG ­ 0 until the sys-
tem reaches a static configuration. Timet is measured in
such a way that one unit corresponds to one single avera
update of all particles and spins of the lattice.

In a previous paper [7] we have performed on the IFL
a particular cycle sequence of taps to show the presen
in granular media of this hysteresis effect. Recently, re
experiments were also performed on density relaxation
granular media under cyclic tapping [3], which showe
indeed the presence of such a hysteresis effect. In or
to compare better with the experimental data, we ha
simulated the same cycle of Novaket al. on the IFLG
model. We have considered a system of size30 3 60
(our data are robust to size changes), with period
boundary conditions along thex axis and rigid walls at the
bottom and top. Our data are averaged over8 different
lattice realizations, each averaged over30 different noise
realizations.
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A starting particle configuration is prepared by ran
domly inserting particles into the box from its top an
then letting them fall down, with the dynamics describe
above, until the box is filled. We performed cycles o
taps in which the vibration amplitudeG is varied at fixed
amplitude incrementg ­ DGyt0 holding constant their
durationt0. More precisely we performed a sequence
N taps, of amplitudeG1, . . . , Gn, . . . , GN , from an ini-
tial amplitudeG1 ­ 0 to a maximal amplitudeGmax ­ 15,
back toG ­ 0, and then up again toGN ­ Gmax. After
each tap we measured the static bulk density of the sys
rsGnd (n is thenth tap number).

Our results are qualitatively very similar to thos
reported in real experiments on dry granular packs [
We find that, when the system is successively shak
at increasing vibration amplitudes, the bulk density
the system typically grows and then decreases as sho
in Fig. 2. However, when the amplitude of shakin
decreases back, the density follows the same path up
only some value ofG and then deviates from it; in fact,
it does not bend down and it keeps growing. As in th
experimental data the second part of the shaking cy
is approximately reversible (see Fig. 2). For this reaso
these processes are called “irreversible-reversible” cyc
[3]. Interestingly, the reversible cycle is a monoton
function of the shaking amplitude (see Fig. 3).

To study the dependence on the cooling rateg, we
repeated the tapping sequence for different values of

FIG. 2. The static bulk densityrsGd of the IFLG model
(the Tetris model gives analogous results) as a function
the vibration amplitudeG in cyclic vibration sequences. The
system is shaken with an amplitudeG which at first is
increased (filled circles), then is decreased (empty circles), a
finally, increased again (filled squares) with a given “annealin
cooling” velocity g ; DGyt0 (at each value ofG the system
has undergone a tap of durationt0 ­ 103). Here we fixed
g ­ 1.25 1023. The upper part of the cycle is approximatel
reversible (i.e., empty circles and filled squares fall rough
on the same curve). The data compare rather well with
experimental data of Novaket al. Gp is approximately the
point where the irreversible and reversible branches meet.Gg
signals the location of a glass transition (see Fig. 3).
917
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FIG. 3. Main frame: As in Fig. 2, we report the densityrsGd
as a function of the vibration amplitudeG for three different
values of the cooling velocityg. For the sake of clarity, we
plot here only the descending reversible parts of the cycle. A
in experiments on glasses, a too fast cooling drives the syst
out of equilibrium. The position of the shoulder,Ggsgd, in
these curves schematically individuates a glass transition. Ins
Our numerical estimate, in the IFLG model (the Tetris mode
gives analogous results), of the dependence ofGgsgd (circles)
and Gpsgd (squares) on the cooling rateg. Superimposed
are approximate fits with the logarithmic law of the text, in
analogy to the fit for the glass transition temperature,Tgsgd, in
glasses [4]. This result apparently shows the dependence of
approximately “reversible branch” ong.

tap amplitude incrementDG with a fixed tap durationt0
(see Fig. 3). We find that the reversible branches ha
a common part for high values ofG while, for smallG,
they split into different curves depending on the coolin
rate g. The slower the cooling rate the higher the fina
density observed at the end of the descending part
the cycle. One can schematically define the pointGgsgd,
where the system freezes and goes out of equilibriu
as the location of the “shoulder” in these “reversible
branches (see Figs. 2 and 3). Thus,Ggsgd, which depends
on g, corresponds to a “glass transition.” Notice tha
Ggsgd is usually different from the pointGpsgd, where the
“irreversible” and reversible branches meet (see Fig. 2
However, asg gets smaller,Gg and Gp become closer
and they may coincide in the limitg ! 0.

As in glasses the system gets out of equilibrium du
to the fact that the characteristic times of relaxation a
much larger than the timet0 involved in the experiment,
but, for the same reason, the location of the path depen
on the rateg.

The limit of g going to zero defines an ideal glass
transition amplitudeG0. Using the analogy with the
glass transition we expect a slow logarithm dependen
of Ggsgd on g. In the inset of Fig. 3 we show our
numerical estimate of the dependence ofGgsgd and
Gpsgd on the cooling rateg. We also show a possible
approximate fit of the data forGg based on the following
phenomenological formula [very close to the typical fit o
918
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the glass transition temperatureTgsgd in glasses [4] ]:

Ggsgd . G0 2 DGgy lnsgycgd , (2)

where G0, DGg, and cg are fit parameters [G0 is the
quoted limit value ofGgsgd when g ! 0, and cg is a
quantity dimensionally corresponding to a characterist
cooling rate]. The above fit is compatible withG0 ­
0.0 6 0.5, results stating that in our model the “ideal”
transition should be located atG ­ 0 (DGg ­ 13 6 2,
cg ­ 0.24 6 0.05). The fit for Gpsgd is analogous, with
again G

p
0 ­ 0.0 6 1, DGp ­ 23 6 2, and cp ­ 0.16 6

0.05. Experimental results in all of these directions wil
be also very interesting.

The analogy with the glass transition suggests, furthe
more, the presence of aging phenomena. Below we try
further quantitatively characterize the out-of-equilibrium
dynamics in granular matter and make quantitative pr
dictions. In analogy with glassy systems we introduce
two-time density-density correlation function (t $ t0):

Cst, t0d ­
krstdrst0dl 2 krstdl krst0dl

krst0d2l 2 krst0dl2 , (3)

where rstd is the bulk density of the system at time
t. In out of equilibrium, Cst, t0d is a function of both
times t and t0 (at equilibrium, just oft 2 t0). The aging
properties of the system are characterized by the spec
scaling properties ofCst, t0d.

In order to study the system in a well-defined configu
ration of its parameters, we evaluateCst, t0d during
a “single tap”: We prepare the system att ­ 0 by
randomly pouring grains in the box from above a
described before, then we start to shake it continuous
and indefinitely with a given (small) amplitudeG. We
expect very similar results by considering, instead of
long tap, a series of short taps which is experimental
more convenient (as in Ref. [2]). The data we prese
here on Cst, t0d are averaged over at least8 different
lattice and512 different noise realizations.

At low G, a good fit for the two-time correlation
function Cst, t0d, on the whole five decades in time
explored, is given by the following:

Cst, t0d ­ s1 2 c`d
lnfst0 1 tsdytg
lnfst 1 tsdytg

1 c` , (4)

wheret, ts, and c` are fit parameters. Very interesting
is the fact that the above behavior is found in bot
of our models (Tetris and IFLG). The data for the
two models, for several values ofG, rescaled on a
single universal master function, are plotted in Fig. 4
In particular, in the explored range ofG [ f0.11, 0.43g
(i.e., x0 [ f1024, 1021g), we foundt , ezyG (with z , 2
in both the IFLG and the Tetris), the mark of activate
dynamics [tssGd behaves approximately ast as a function
of G]. The asymptotic valuec` is difficult to determine
with some precision: In the aboveG range we evaluated
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FIG. 4. The two-time density-density correlation function
fCst, t0d 2 c`gys1 2 c`d, as a function of the scaling variable
a ­ lnfst 1 tsdytgy lnfst0 1 tsdytg. Scaled on the same mas-
ter function are data from both models considered in the prese
paper (Tetris, squares; IFLG, circles) and for vibration am
plitudes G ­ 21y lnsx0d with x0 [ f1024, 1021g. The master
function is1ya. Inset: The correlationCst, t0d for the Tetris at
G ­ 0.22 (or x0 ­ 0.01) as a function oft 2 t0 for four values
of t0 ­ 102, 2 102, 103, and104.

approximatelyc` ­ 0.2 0.3 for the IFLG model and
c` ­ 0.0 0.2 for the Tetris model.

Equation (4) essentially states that, for times lon
enough, the correlationCst, t0d is a function (linear) of
the ratio lnst0dy lnstd. Such a scaling behavior is known
in other disordered systems, such as random ferromag
or random field models [9], and has been proposed
the Fisher and Huse droplet theory of finite-dimension
spin glasses [10]. However, it seems to be different fro
other scaling functions proposed to fit experimental da
in spin glasses [5]. All of this shows the necessity o
experimental confirmation of our results in the framewor
of granular media.

In conclusion, in the framework of simple frustrated
lattice gas models, we have studied the off-equilibrium
dynamics of slightly shaken granular materials. Thes
models have been previously shown to share many ph
nomena characteristics of granular media as logarit
mic compaction or segregation. Here, we have studi
irreversible-reversible cycles and found good agreeme
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with the experimental data on granular packs [3] and ma
quantitative the strong analogies with nonequilibrium d
namic properties observed in glassy systems as the
portance of “cooling rates”g. We could properly define
an equivalent glass transition point,Ggsgd , 1y logs1ygd,
in granular media. To fully characterize the out-o
equilibrium dynamics of our models for granular med
during compaction, we evaluated the two-time dens
correlation functionCst, t0d, which is found asymptoti-
cally to be a function of the single ratioa ­ lnst0dy lnstd.
These results observed in two different models are a
amenable to an experimental check.
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