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Numerical Models of Irrotational Binary Neutron Stars in General Relativity
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We report on general relativistic calculations of quasiequilibrium configurations of binary neutron
stars in circular orbits with zero vorticity. These configurations are expected to represent realistic
situations as opposed to corotating configurations. The Einstein equations are solved under the
assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity
field inside the stars is computed by solving an elliptical equation for the velocity scalar potential.
Results are presented for sequences of constant baryon number (evolutionary sequences). Although
the central density decreases much less with the binary separation than in the corotating case, it still
decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.
[S0031-9007(98)08274-X]

PACS numbers: 04.25.Dm, 04.40.Dg, 97.60.Jd

Inspiraling neutron star binaries are expected to benotion, namely, the&ounter-rotation(as measured in the
among the strongest sources of gravitational radiatiomo-orbiting frame) of the fluid with respect to the orbital
that could be detected by the interferometric detectorsnotion (see also Ref. [12]). Since then, Teukolsky [13]
currently under construction (GEO600, LIGO, TAMA, and Shibata [14] gave two formulations based on the
and Virgo). These binary systems are therefore subjedefinition of irrotationality, which implies that the specific
to numerous theoretical studies. Among them are fullyenthalpy times the fluid 4-velocity is the gradient of some
relativistic hydrodynamical treatments, pioneered by thescalar field [15] potential flowy. The three formulations
works of Oohara and Nakamura (see, e.g., [1]) and Wilsomare equivalent; however, the one given by Teukolsky and
et al. [2,3]. The most recent numerical calculations, thoseShibata greatly simplifies the problem.
of Baumgarteet al. [4,5] and Marronettiet al. [6], rely The hydrodynamic equations may be derived as
on the approximation of (i) a quasiequilibrium state andfollows. For a perfect fluid at zero temperature, the
(ii) synchronized binaries. Whereas the first approxima-momentum-energy conservation equatign T = 0 is
tion is well justified before the innermost stable orbit, equivalent to theuniformly canonical equation of motion
the second approximation does not correspond to phys[16,17],
cal situations, since it has been shown that the gravi- u- (VAW =0 1)
tational radiation-driven evolution is too rapid for the
viscous forces to synchronize the spin of each neutro"
star with the orbit [7,8] as they do for ordinary stellar bi- V- (nu) =0, 2
narieg. F_zather,_ the \(iscosity is negligiblg an(_JI the fluidynere u is the fluid 4-velocity andw is the momen-
yelomty cwculgtlon (with respect to some inertial framg) tum density 1-formw = hu, & being the fluid specific
is .conserved in these ;ystems. Prqwded j[hat the 'n't'aénthalpyh = (e + p)/mpn (V A w denotes the exterior
spins are not in the millisecond regime, this means thafje iyative ofw). In the above equatiom, e, andp de-

close binary configurations as well approximated by Z€Iote, respectively, the fluid proper baryon density, proper

vorticity (i.e., irrotational) states. _ _ total energy density, and pressure. ltis clear that a poten-
Moreover, dynamical calculations by Wilson g flow

et al.[2,3] indicate that the neutron stars may indi-

vidually collapse into a black hole prior to merger. This w=V¥ (3)
unexpected result has been called into question by & a solution of the equation of motion (1). Moreover,
number of authors (see Ref. [9] for a summary of all ofthis particular solution is the relativistic generalization
the criticisms and their answers). As argued by Mathew®f the classical irrotational flow and, as stated above,
et al. [9], one way to settle this crucial point is to perform corresponds to the physical situation reached by a binary
computations of relativistic irrotational configurations. system of neutron stars.

We present here the first quasiequilibrium irrotational As a first approximation of the relativistic treatment
relativistic binary neutron star model computations. of the problem, we assume that there exists a helicoidal
We have proposed a relativistic formulation for symmetry [10]. Let us denote Hythe associated Killing
quasiequilibrium irrotational binaries [10] as a generaliza-vector. It is to be noticed that this symmetry is exact
tion of the Newtonian formulation presented in Ref. [11]. at the Newtonian limit. The helicoidal symmetry implies

The method was based on one aspect of irrotationalyw = 0. From Cartan’s identityLyw =1-V A w +
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V(1 - w), the potential form (3) leads immediately to the required. One well-known possibility is rigidity (i.eu
following first integral of motion: colinear tol) [18]. The alternative property with which
1-w = const (4) we are concerned here is irrotationality.

This was first pointed out by Carter [17]. Note that The fluid m_otion is now completely determined _by the
this result is not merely the relativistic generalization offscalatrhpogentlal\lf. Tge equation ?Mf gan ge detr)lgle;d
the Bernoulli theorem which states tHat w is constant oM the baryon number conservation (2). One obtains

along each single stream line and results directly from the 2y.vU + VY- V(l) =0. (5)
existence of a Killing vector without any hypothesis on h

the flow. In order for the constant to be uniform over Within the 3 + 1 formalism and taking into account the
the stream lines (i.e., to be a constant over spacetime), &licoidal symmetry, this last equation is nothing but a
in Eg. (4), some additional property of the flow must ?ePoisson-Iike equation which reads

AT,

. . hl
nD;, D'V + D'nD;¥ = — N Z

. , . . B!
BlDi}'l + I’l{(Dl\P + TB1>D1 Inh — Dl\PD,‘ InN — ND,(/’IFH)} + KnhI‘n ,
(6)

where we have introduced the covariant derivative | inertial observer at rest with respect to the binary
with respect to the spatial 3-metric, the trakeof the  system (i.e., such that the Arnowitt-Deser-Misner (ADM)
extrinsic curvature tensor, the shift vect®, and the 3-momentum vanishes on the slices= const). Besides,
lapseN defined by the3 + 1 orthogonal decomposition we introduce theonrotatingshift vectorN defined by

of the helicoidal Killing vectorl = Nu — B (n being 5

the unit future directed normal vector to the hypersur- B=N-0—. 9)
facer = const) and the Lorentz factdf, = —n - u of d

the fluid with respect to the Eulerian observer whose The gravitational field equations are derived within
4-velocity isn. [Latin indices run in the range 1,2,3 and the 3 + 1 formalism from the Hamiltonian constraint,
geometrized units@ = 1 and ¢ = 1) are used.] This momentum constraint, and trace of the spatial part of
equation has been recently derived by Teukolsky [13] anthe Einstein equation [3,5]. Introducing = InN and
independently by Shibata [14]. Note that Eq. (6) is inde-8 = In(AN), they can be written as

pendent of the gravitational field equations.

As a first milestone in our project of studying coalesc- AB = 4mwA%S + iAzK,-jK”'
ing binary systems, we will adopt the Wilson-Mathews ] 4 '
approximation for the form of the metric [2,19]. This ap- - VirV'y + V,BV'B), (10)

proximation consists of taking a conformally flat 3-metric,
so that the full spacetime metric reads

‘ ( o Av = 47A2(E + S) + A2K; ;K7 — VoV B, (11
ds* = —(N* — B;B')dt* — 2B;dtdx' + A’n;;dx' dx/, = ( ) ! A. D

(7) i 1o TN — 2 i
where n is the flat space metric. The field equations ANT + 3 V(VjN') = =167 NA (IE T p)U
reduce now to the Wilson-Mathews equations [2,3] for + 2NA2K’ij(3,B —4v), (12)

N, B, andA. As of now, it is not obvious whether the - . ) L ) i
Wilson-Mathews approximation is valid in the case of co-WereV is the covariant derivative associated with the
alescing compact binaries. We presently use this particlat 3-metricny andA = V'V; is the correspondlng_LiapIa—
lar form of the metric in order to simplify the problem. cian (throughout the article, we use the notatfon=
However, it is to be noticed that (i) the first post- n/V;). E =Ta(e + p) — p,S =3p + (E + p)U;U’
Newtonian approximation to Einstein equations fits thisasnd U’ = D*W¥/(hT';) are, respectively, the fluid energy
form, (ii) it is exact for arbitrary relativistic spherical con- density, trace of the stress tensor, and fluid 3-velocity, the
figurations, and (iii) it is very accurate for axisymmetric three of them measured by the Eulerian obserér.can
rotating neutron stars [20]. An interesting discussionbe computed according to

about some justifications for the Wilson-Mathews ap- 1 —
proximation may be found in [9]. Finally, we chose maxi- I’y = [1 + -V, ¥V V¥

1/2 1
A2 } BN 7
mal slicing: K = 0. i

Following [10], we introducd? such that the helicoidal and the extrinsic curvature tensor is computed by means

Killing vector 1 satisfies of the identity
0 d
1= — + O — 8 . - =i 2
at g’ ®) KV = ——— {V N/ + VN = = n”Vka}, (14)
where 7 and ¢ are, respectively, the time and azi- 2A°N 3

muthal coordinates associated with the asymptotiavhich results from the Killing equation fdr
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1 + A%n;;(B'/N)U/

n .
| U= A2n;(BIBI/N?)
1

1 B'B
H+ v+ 3'”(1 - A’ny W) +Inl" = const Note that Eq. (15) corresponds to Eq. (66) in Ref. [10]
(15) and that the constant which appears at its right-hand side
is nothing but the logarithm of the constatitintroduced
where H := Inh and I' is the fluid Lorentz factor with by Teukolsky [13].
respect to the co-orbiting observer (i.e., the observer Now, introducing = dInH/dInn, the equation for
whose 4-velocity is collinear tb: | the fluid velocity potential (6) becomes

The matter distribution is determined by the first
integral of motion (4). Taking its logarithm leads to

r=r (16)

CHAV + V' HV, U = —A%hT, %ViH + {H{(Vi\lf + AT, %)V,H ~VUV,8 — A2 %Vi(th)}. (17)

The equations to be solved [(10)—(12),(17)] constitutengn + p/(y — D]with k = 1.8 X 1072 Im kg2 and
a system of nonlinear Poisson-like equations. Because @&ach having a baryon madgg = 1.625M,. For such
the elliptical nature of these equations, we have exhibitegparameters, we found that the gravitational mass of a
the common flat Laplacian operatgx which can be single star in isolation iV = 1.515M, (in agreement
solved by means of the usual spectral methods (cf., e.gwith Ref. [9]), with a central energy density" =
[21] or [22]). Because of the nonlinearities, we use4.005p,u.c? (paue = 1.66 X 107 kgm™) and a com-
an iterative procedure based on a multidomain spectrgactification ratia /R = 0.140 (e. andM /R are slightly
method [23] to derive the solution. The numerical codedifferent from that quoted in Ref. [9], probably due to dif-
will be described in detail in a forthcoming paper [24]. ferent values for the constants ¢, M, andmg; we use
Let us simply mention here some tests passed by thé = 6.6726 X 107! m® kg~!s™2, ¢ = 2.997924 58 X
code. In the Newtonian and incompressible limit, thel0® ms™!, My = 1.989 X 10*° kg, and mg = 1.66 X
analytical solution constituted by a Roche ellipsoid is107%7 kg).
recovered with a relative accuracyefl0° (cf. Fig. 6 of We define the coordinate separatignas the coordi-
Ref. [23]). For compressible and irrotational Newtoniannate distance between the two density maxima. Using the
binaries, no analytical solution is available, but thesame value as the one considered by Matheta. [9],
virial theorem can be used to get an estimation of thenamely,d = 100 km, we found that aMg = 1.625M,
numerical error: we found that the virial theorem isirrotational configuration in quasiequilibrium at this sepa-
satisfied with a relative accuracy db~’7. A detailed ration has a total angular momentumJgf2Mg)?> = 1.13
comparison with the irrotational Newtonian configurations
recently computed by Uryu and Eriguchi [25,26] will Orbital frequency [ Hz]
be presented in Ref. [24]. Regarding the relativistic 0005 1 \ ‘ \ ‘ !

. 332 292 252 195 156 129 109 94 82

case, we have checked our procedure of resolution of
the gravitational field equations by comparison with the
results of Baumgartet al. [5] which deal with corotating
binaries [our code can compute corotating configurations
by simply setting IT" = 0 in Eq. (15) and using/! =
—B'/N for the fluid 3-velocity]. We have performed the

inf

-0.005 -

-0.01 // ]

Relative change in central density Ae /e,

comparison with the configuratiogy = 0.20 in Table V o

of Ref. [5]. We used the same equation of state (EOS) 0015 | 1

(polytrope withy = 2), same separationc, and same K M. = 1.625 M

value of the maximum density parameg**. We found o @ motational

a relative discrepancy of 1.1% di, 1.4% onM,, 1.1% "002 ¢ G--oCowotating |

onM, 2.3% onJ, 0.8% onz,, 0.4% onr4, and 0.07% on 4

rp (USing the notations of Ref. [5]) ~0.025 4‘0 56 éo 76 éo 9‘0 160 110
These tests being passed, we turned towards the cal- Separation d [km ]

culations of irrotational relativistic binaries. We chosef|g 1. Relative variation of the central energy density

to investigate the |nstab|||ty issue raised by Wilson andeC with respect to its value at infinite Separatiogi“f

Mathews [2] by computing an evolutionary sequence (i.e.as a function of the coordinate separatiah [or of

a sequence at fixed baryon number) made of irrotationghe orbital frequency /2] for constant baryon mass

quasiequilibrium models. We took the same configuras = 1.625Mo sequences. The solid (dashed) line
corresponds to an irrotational (corotating) sequence of

tion as that presented by Mathews, Marronetti, and W”'coalescing neutron star binaries. Note that there is no

son (Sect. IV-A of Ref. [9]), namely, two identical stars substantial increase of the central density as the sepa-
obeying ay = 2 polytropic EOS[p = k(mgn)?,e =  ration decreases.
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which is quite similar to the value 1.09 found by Mathews [9] G.J. Mathews, P. Marronetti, and J. R. Wilson, Phys. Rev.
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increase of the central (i.e., maximum) density with re-{10] S. Bonazzola, E. Gourgoulhon, and J-A. Marck, Phys.

spect to static stars in isolation, as they did (they report a _ Rev. D56, 7740 (1997).
central density increase of 14%). [11] S. Bonazzola, E. Gourgoulhon, P. Haensel, and J-A.

: : . : Marck, in Approaches to Numerical Relativitedited b
In order to investigate the evolution of a coalescing 7 d’InveEr?o Cambridge University Press?gambri)(;ge
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110 km (/27 =82 Hz) and ending atd =41 km  [13] S A Teukolsky, Astrophys. 504, 442 (1998).

(Q /27 = 332 Hz). We have considered both corotating [14] M. Shibata, Phys. Rev. B8, 24012 (1998).

and irrotational cases. The evolution of the centra[15] L.D. Landau and E.M. LifchitzMécanique des Fluides
density along these sequences is shown in Fig. 1. In  (Mir, Moscow, 1989).

the corotating case, we found that the central densityl6] A. Lichnerowicz,Relativistic Hydrodynamics and Magne-
decreases substantially when the stars approach each tohydrodynamic¢Benjamin, New York, 1967).

other, as expected from previous independent calculatiorl$?] B. Carter, inActive Galactic Nucleiedited by C. Hazard
[4,5]. In the irrotational case, we found that the central ~ @nd S. Mitton (Cambridge University Press, Cambridge,

density still decreases with the separation but much Ies['ig] E”alagg’ é??g(;gé;?b Philos. S, 527 (1965)
than in the corotating case. - Fl- SOYer, i y . ’ :
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