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Two-Dimensional Copolymers and Exact Conformal Multifractality
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We consider in two dimensions (2D) the most general star-shaped copolymer, mixing random
walks (RW) or self-avoiding walks (SAW) with specific mutual avoidance interactions thereof. Its
exact conformal scaling dimensions in the plane are derived from an algebraic structure existing
on a random lattice (2D quantum gravity). The multifractal dimensief$) of the harmonic
measure of a 2D RW or SAW are conformal dimensions of certain star copolymers. The exact
associatedf(«) are identical for a RW or a SAW in 2D. These are the first examples of conformal
multifractality. [S0031-9007(98)08110-1]

PACS numbers: 05.40.Fb, 11.25.Hf, 64.60.Ak, 82.35.+t

The concepts of generalized dimensions and associataimple random walks, scaling exponents describing RW
multifractal (MF) measures have been developed moreonintersections [11,12], conjectured in [13], have been
than a decade ago [1-4]. They are encountered in mamgcently derived using conformal invariance and the so-
physical situations: strange attractors in dynamical sysealled quantum gravity method [14].
tems, growth phenomena, harmonic measure of diffusion- The aim of this Letter is to extend conformal invariance
limited aggregates, electron localization, random resistorgp arbitrary mixed copolymers, thereby providing the
and random spin systems. Recently, analytic progressxact MF harmonic spectrum of a RW or a SAW, an
has been made for turbulence of a passive scalar [Sxample ofconformal multifractality.
or for a growth model of diffusion-limited aggregation Consider a general star copolyms§rin the planeR?

[6], both where the MF dimensions can be calculatedor in Z?), made of an arbitrary mixture of Brownian
perturbatively. paths or RW’'s (setB), and polymers or SAW’s (set

It is well known that universal geometrical fractals, e.g.,P), all starting at neighboring points. Any pais, B)
random walks, polymers, Ising, or percolation models aref such pathsA,B € B or P, can be constrained in a
essentially related to standard critical phenomena and fielspecific way: either they avoid each othdr B = J,
theory, for which conformal invariance in two dimensionsnoted A A B), or they are transparent and can cross
(2D) has brought a wealth of exact results. By contrasteach other (noted v B), corresponding to four different
few connections between multifractals and field theoryfixed points [15]. This notation allows for angested
have been found, although the algebras of their respectiviateraction structure; one can decide for instance that
correlation functions reveal intriguing similarities [7]. It the branche4P, € P},—; ., of an L-star polymer, all
remains a challenge to see if an exact description of sommutually avoiding, further avoid a bunch of Brownian
multifractal phenomena could emerge in 2D from thepaths{B, € B}:—:.. ., all transparent to each other,
conformal invariance classification.

A particularly interesting multifractal phenomenon was S = (/\?_1 pe) A <V:—1 Bk>. (1)
singled out some time ago by Cates and Witten [8]. They B B
showed that the moments of the harmonic measure, i.€ln 2D the order of the branches of the star Copolyn‘[ms
the Laplacian diffusion field near an absorber, the lattematter and is intrinsic to ouA, V) notation.
taken as a simple random walk (RW, i.e., Brownian To eachspecificstar copolymer cente§ is attached a
motion), or self-avoiding walk (SAW, i.e., polymer), conformal scaling operator with a scaling dimensigs).
exhibit in 4 dimensions multifractal scaling fod <  To obtain proper scaling we consider the Brownian paths
4. The associated exponents can be recast as those #id the polymers to have the same mean #izelt is
star copolymers made of a bunch of independent RW'gonvenient to define for each star a grand canonical
diffusing away from a generic point of the absorber.partition function [9,11,16], with fugacities and z’ for
This allowed the perturbative calculation of the MF the total length§B| and| 2P| of Brownian or polymerlike
spectrum through standard renormalization group theorpaths,
for polymers and the = 4 — d expansion.

Star polymers or networks made of self-avoiding walks Zr(S) = D BIPHR(S), 2)
only and their scaling properties are well understood [9], B.P€ES
especially in 2D, where all topology dependent exponentsvhere the set of walks of is constrained by the indi-
are known exactly from conformal invariance [9,10]. Forcatrix 11z(S) to stay within a disc of radiu® centered
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on the star. At the critical values = uz', z/ = up',
where for the RW’sup is the coordination number of
the underlying lattice, angkp is the effective one for the
SAW'’s, Z decays as [9,16]

Zr(S) ~ R, (3)
wherex(S) is associated only with the singularity occur-
ring at the center of the star where all critical paths mee

while xV is the contribution of the independent dangling

ends or split star. It reads’ = ||Bllxg; + IPllxp1 —
2V, where||B|| and||P|| are, respectively, the total num-
bers of Brownian or polymer paths of the stag;; or xp ;
are the scaling dimensions of the extremities cfirsgle
RW xp; = 0, or SAW xp | = 45—8 [9,17]. The last term
V = ||B|l + ||P|l corresponds in (3) to the integration
over extremity positions in the disc of radiRs

When the star is constrained to stay ihaf planewith
its core placed near thiboundary its partition function
scales as [9,10]

Zr(S) ~ RTTO™, 4)
where x(S) is the boundary scaling dimension, witfY
staying the same for star extremities in the bulk.

Any scaling dimensionx in the bulk is twice the
conformal dimension(c.d.)A© of the corresponding

operator, while near a boundary (b.c.d.) they are identica

x = 2A(O), 7 = A0,

disc of radiuskR now being replaced by the indicatriX

of the star being embedded @&. The partition sum (8)

is now threefold grand canonical, depending implicitly on

fugacitiese %, z, andz’. A further fugacity term has to

be added when dealing with a random grapiwith the

disctopology(y = 1) and boundary lengttdG|, in order

to define a boundary partition function,
7(S) = z e*BIGI*B’IE)GIZG(S)’

G(x=1)

(9)

where the core star is noan the boundanpG.

There exists a finite size scaling regime [20] where both
the lattice and the walks become infiniig, 8, z, andz’
approaching together their respective critical values in a
well-defined way. In this regime, the partition functions
Z, Z, after normalization by the random surface ones (6),
are expected to scale as [21]

2(8)/Zy=2(B) ~ G724, (10)

Z(8)/Zy=1(B) ~ 160G 2|67, (11)

Here |G| ~ (B — B.)"! is the average size of the
random lattice, whildoG| ~ |G|'/? is the mean length
f the boundary. A(S) and A(S) are, respectively, the
ulk and boundary conformal dimensions of the star core,
dressed by gravity. Finally the dimensiar in (10) and

This Letter provides the main lines of a derivation of thesg11) is associated with the star extremities, as wasn

exponents.

(3). Equations (10) and (11) are formally identical to (3)

The idea is to use another representation where thand (4) in the plane, after recalling (5) and identifying the

RW’s or SAW’s are on a 2D random lattice, i.e., in the
presence of 20guantum gravity[18]. One can indeed

star areak? in the plane to the random ar¢al.
A general constitutive relation due to Knizhné al.

put any 2D statistical system on a random planar graphexists between the conformal dimensiaff’ of a scaling
thereby obtaining a new critical behavior, correspondingoperator in theplaneand the c.dA of the same operator

to the confluence of the critical point of the infinite
random graph with that of the original model. The
partition function of the random grapfi made of, e.g.,
trivalent vertices, reads

Z(B) =D e Pl
G(x)
where the sum extends over grapts with a given
topology of Euler characteristioy, modulo the group
of automorphisms ofG, with |G| being the number of
vertices. Near the critical poin8. where |G| becomes
infinite,

(6)

Zy(B) ~ (B = Bo)* 7. (7)
Yse(x) = 2 — f—v\/ is the string susceptibility exponent
[19]. The partition function of the copolymer star on
the random lattices, with the sphere topologyy = 2),
is defined as

zZ(S)= > e Plolz(8),
G(x=2)

where the partition functiorZs(S) is defined as in (2),
with the indicatrix 11 for the star being confined to the

(8)

on therandom surfacA® = A[1 — (1 — A)/«], where

x is a parameter related to the central charge of the
original statistical model in the plane =1 — 6(1 —
k)?/k [18,22]. For walksc vanishes, whence = 3/2,

and

AO =y@), A9 =y@A),
U(x) = 3(1 + 2x),

this relation holding also foboundaryoperators.

Here | give a set of basic underlying topological
“surgery” rules which allow the mixing of geometrical
operators on a random surface. The set of relations
for walks is so stringent that it yields immediately the
conformal dimensions of any copolymer star, both on a
random surface and in the plane.

Star algebra—The bulk and boundary conformal di-
mensions, in the presence of gravity, satisfy

20 — youly =2) = A. (13)

This fairly general relation can be derived from factor-
ization properties of partition functions like (10) and (11)
[14,21]. As a consequence, substituting relation (13) with

(12)
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Ysuly =2) = —% in (12) gives the planabulk dimen-  above, these are the only numerical seeds, i.e., generators,
sions from the gravitppoundaryones, we need.
. | 5 Stars can include bunches of copies of transparent
A =y@) =vAd), Vx) = 7 (4x= = 1). RW’'s or m transparent SAW's. Their b.c.d.'s if?

(14) are, respectively, by using (16) and (18§f§))(n) =n

X0 _ 5 . . .
Consider now two substars B, issued at the same point a1n7d Ap Em) N ém fror? whlc_:hld;;he mXersEzl mappang
near aboundaryline and avoiding each other. We state (~ ) to the random surface yields;(n) = U™ (n) an

~ —~1/5
that theirboundarydimensionsA on therandom surface  A7(m) = U~'(3m). The star made of. bunchest &
areadditive {1,...,L} of ny transparent RW’s each, and bunches

¢ e{1,...,L"} of my mutually transparent SAW's, all

A4 A B) = A(4) + A(B). (15) mutually avoiding, has planar scaling dimensions owing
Owing to (13), a similar relation, but with a constant g (12), (14), and (15),
shift, exists for bulk exponents. Q, two elements in a A(O){ne me} = U(A) A(O){n€ my} = V(&)

pair (A, B) of walk sets are indeed made nonintersecting . L
by gluing a fluctuating patch of random surface between x _ -1 15
them. Each set#d or B, defines its own independent disc Atne,moy ; U™no) + Z v g |
as in (9), with additive b.c.d.’s (11) and (15). Soutually
avoiding sets are rendered independent by the fluctuatio
of a random surface.Thus relation (15) can be derived
from factorization properties of exact partition functions
[14,21].

Consider by contrast two setls B of walks which are
mutually transparent, i.e4 v B. In the half planéR™ x ; X o T "
R, they are independent, and their boundary dimension& SAW's, all mgjtu/all_y avmdmg(Vf, €2’ ne = me = 1),
obey a linear relation, A(Spp) =L + 5L ges ti;e c.d. ik, X

AO@ v B) = AO4) + AO(B), (16) AOS ) = 3@ +5L)(1 + 2L + 5L
due to the trivial factorization of their partition functions. AO(S, ) = 5 [4L + L) — 1],

On a random surface, their boundary dimensions argecovering forL = 0 the SAW exponents [10] and for
obtained by inverting (12) L' = 0 the RW nonintersection exponents [14].
A = Ufl(A(O))’ U lx) = %(\/24); +1-1) Disconnection exponents:Take any walk staA, with
elementary boundary c.d.in R>. The starS, = (VA)"
(17) made ofn transparent copies of has b.c.dz¥ in R?,
and are not additive. The metric fluctuations indeectthus U~!(n%) on G. Its bulk c.d. inR? is, according to
couplethe setsA, B. (5) and (14),x(S,) = 2V[U ! (nx)], which differs from
It is clear at this stage that the set of equations,x, wherex = 2V[U~!(x)] is the bulk c.d. inR2. Their
above is complete It allows for the calculation of difference is thedisconnectionexponent, governing the
any conformal dimensiona(S) or A(S) associated conditioned probabilityPx ~ R~—*(S)+"* that the union
with a star structureS of the most general type, as of » copies does not disconnect the star origin from
in (1), involving (A, V) operations separated by nestedinfinity, within a disc of radiusk.
parentheses. Any such structure can be systematically Multifractal harmonic measure—~The harmonic mea-
reduced: One starts from the outermost parenthesis sefure H(w) of a given set is the probability that a RW
and calculates b.c.d.’s of operatiofrs, v) by using (15) coming from infinity first hits the set (the absorber) at
for A on the random surfac&, and (16) forv on the  point w. When the set is a RW or a SAW of siz& the
plane R?, while applying repeatedly the nonlinear map sjte average of its momentg" has been shown [8] to be
U: G — R (12), or its inverseU~' (17) to transfer to  represented by a copolymer star partition function of type
the proper space where the boundary dimension is a lineg1) where the absorber avoids a bunchroindependent
representation o or V. At the end, one uses (14) to RW's. More precisely),, H"(w) ~ Zr(San)/Zr(SA1),
recover bulk dimensions. where the absorbe§ is either the two-RW staB v B
Brownian-polymer exponents:The single extremity or the two-SAW starP A P, made of two nonintersect-
scaling dimensions are for a RW or a SAW near a Dirichleing SAW’s. We have introduced the shorthand notation
boundary inR* [9,23], Syxn =S A (VB)" describing the copolymer star made
~ (0) < (0) 5 by the absorbeS hit by the bunch(vB)" at the apex
Ap (1) = 11 Ap(D) =5, _ (18) only. Owing to Eq. (3), we get the scalig,, H"(w) ~
or on G, using (17), Ag(1) = U'(1) = 1, Ap(1) =  R™7™, wherer(n) = (n — 1)D(n) = x(Sxn) — x(Sx1)
Ufl(g) = % Because of the star algebra describeddefines (annealed [6]) generalized dimensipris). Our

=1
hese exponents aiavariant under permutationof the
unches of walks. The existence of such a relation has
been found for RW'’s in [24], but with an unspecified
U, which is here derived from quantum gravity and
generalized to SAW's.
For a copolymer starS; ;» made of L RW's and
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FIG. 1. Harmonic multifractal dimensiongn) and spectrum
f(a) of a two-dimensional RW or SAW.

formalism (14), (15), and (17) immediately gives the scal-
ing dimensionsx(Sxn) = 2V[A(S) + U~ !(n)], where

A(S) is as usual the quantum gravity boundary dimen-

sion of the absorberS alone. A simple calculation
gives 7(n) and its Legendre transforrfi(a) + 7(n) =
an, a = dr(n)/dn,

rn)=2n—1)+yy(24n +1-5), (19)
fl@) =515 + 5 — 5)’Ca — )" — a}, (20)

where y = 4A(S) — 1 is the only parameter encoding

which absorber we consider (which can actually be any

star tip). For a RW absorber, we haeB Vv B) =
U~1(2) = 3, while for a SAW A(P A P) = 24,
2U‘1(§) = % thusy = 5 in both cases. The coincidence
of these two values tells us that in 2D the harmonic
multifractal spectraf(a) of a random walk or a self-
avoiding walk arddentical. Their MF spectra associated
with walk ends[8], however, diffef and are obtained
usingy = 3 for a RW end, ory = 2 for a SAW end.

The corresponding universal curves for=5 are
shown in Fig. 1: 7(n) is half a parabola, and(«)
is a hyperbola. D(1) = 7/(1) = 1 is just Makarov's
theorem [25]; the divergence of at aymn = % corre-
sponds to singular needles in the absorber, whit€0) =
sup.f(a) = f(3) = ;—‘ is the Hausdorff dimension of the
Brownian frontier or of a SAW. Thus Mandelbrot’s clas-
sical conjecture identifying the latter two is generalized
and proven for the whol¢(a) harmonic spectrum.
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