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Thermodynamics of the One-Dimensional SU(4) Symmetric Spin-Orbital Model
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The ground-state properties and thermodynamics of the one-dimensional SU(4) symmetric spin
system with orbital degeneracy are investigated using the quantum Monte Carlo loop algorithm.
The spin-spin correlation functions exhibit a 4-site periodicity, and their low-temperature behavior
is controlled by two correlation lengths that diverge like the inverse temperature, while the entropy is
linear in temperature and its slope is consistent with three gapless modes of velgzityThe physical
implications of these results are discussed. [S0031-9007(98)08155-1]

PACS numbers: 75.10.Jm, 75.40.Mg

In many transition metal oxides, the electron configu- Second, it was pointed out very recently [8,9] that the
ration has an orbital degeneracy in addition to the spirHamiltonianH has not only the obvious SB) X SU(2)
degeneracy. The sign and magnitude of the spin-spin intesymmetry, but that the full symmetry of Eq. (1) is the
actions is then determined by the orbital occupation leadeven higher symmetry group SU(4). 8 symmetric
ing to strong coupling between orbital and spin structuremodels in one dimension were studied by Affleck, using
(for an overview see Ref. [1]). The Hamiltonian describ-conformal field theory [10]. He showed that any one-
ing such spin-12 systems with twofold orbital degeneracy dimensional system of SW) symmetry is critical. He
(isospint = 1/2) was derived by Kugel and Khomskii [2] calculated explicitly the critical exponents and zero tem-
and extensively studied in the context of® by Castel- perature correlations and showed that at the very low
lani et al. [3] more than 20 years ago. The Hamiltonian energy scale these models are equivalenWte- 1 free
has rotation symmetry il space. Ir# space this symme- massless bosons. These general results naturally also ap-
try is broken by a Hund's rule term. Recently, the inves-ply to our case withV = 4.
tigation of these spin-orbital models has attracted renewed In this Letter we present the first investigation of the
interest, following the progress in the experimental studieshermodynamic properties of the model Eq. (1). For this
of transition metal oxides [4—6]. purpose we have adapted the continuous time quantum

In this Letter we study the Hamiltonian derived by Kugel Monte Carlo (QMC) loop algorithm [11] to spin-orbital
and Khomskii on a 1D chain, but neglecting the Hund’'smodels. For this kind of simulations three types of loop
rule term. In this isotropic case the Hamiltonian is updates have to be included: Spin (orbital) loop updates,

where only spin (orbital) variables are changed, but also
> 1 . 1 spin/orbital loop updates where both spin and orbital are

H= JZ<2Si FSien 5)(27,» T E)' (D) simultaneously updated. In fact, this algorithm is S0 pow-
l R erful that we can also use it to investigate the zero-
It is rotationally invariant not only inS space, but also temperature properties of the model: Systems of length
in 7 space. Furthermore it has an interchange symmetry. = 100 [with periodic boundary conditions (PBC)] and
between spins and orbitals. In such a case, the standaiverse temperature8J = 400 or 800 (8 > L/v) are
mean-field approach [3] that leads to ferromagnetic corpredominantly in the ground state, and the small contribu-
relations for one type of variables and antiferromagnetidions from thermally excited states are negligible compared
(AF) correlations for the other one should not be approprito our statistical errors. In this way, the ground-state prop-
ate. Our main motivation is to study the consequences drties can be investigated. We start with a brief summary
this symmetry, in more detail. of these results since some of them differ significantly from

A number of analytic results have already been obtainethe density matrix renormalization group (DMRG) results
on this model. The system considered here [Eg. (1)]reported in Ref. [9].
belongs to a class of models which is exactly solvable The ground-state energy for a chain bf= 100 with
in one dimension by the Bethe ansatz. The Bethe ansaferiodic boundary condition is found to bg(L = 100) =
solution obtained by Sutherland gives the exact ground-0.8253(1), in perfect agreement with the Bethe ansatz
state energy and the “spin wave” excitations as well [7].result for the infinite chain€0.8251189...) [7]. The
For the model of Eq. (1), there are 3 gapless modes, havinggro-temperature  correlation functionw;;(T = 0) =
all a common velocityy = 7J/2. They are shown in (S7S;)(T = 0) as a function ofi — j| (for L = 100) is
Fig. 3 of Ref. [7]. shown in Fig. 1a and its Fourier transform in Fig. 1b.
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0.004 — — A S(K) function w(r) = w;; )i—j|=-. Fitting w(r) to the form
<s's’> \ A @ ® | " bl (L — r) S ]cos 5 r) + bolr + (L -
0.000 A W ' r)~*] for the range20 < r < 50 (making explicit use
v V VNV that our system has PBC), we find
0.34 B
-0.004 | 1T 102 @z =150 =001, @ =185*016. (3)
! 033 ¥ The best fit is obtained fab,» = 0.091, a,/, = 1.499,
0008 e 22 28 0 w2 w a2 n? bo = —_0.035, and apg = 1.85. A precise estlmate ofvg
li-i K is not simple since the = 0 mode is only a relative small
. . superposition on the top of the much stronges 7 /2
FIG. 1. (a) QMC results for the correlation function; =  mode. The exponent, ,, however, can be determined to

S7S%) (solid points) as a function ofi — j| for a chain ; e ;
gf |é?’lg(th L :ploo )vvith PBC which ‘is p{édominantly in hlgh precision. _These results are in very good agreement
the ground state (for details see text). The correlations fo ith the prediction of Affleck, yvho Calcylat_ed the C”_t'cal
li—jl=1, 2, and 4 (which are out of the plot range) b€havior of the SU(4) correlation function in an arbitrary
are—0.07168(1), —0.040 11(1), and 0.008 261(4), respectively. SU(4) symmetric model using conformal field theory [10].
The statistical error bars of the QMC calculations are muchThis correlation function is proportional to;;, as a
?I‘el‘c”erf than the Sg.‘;be'S- (b)l shows the Fourier transformyonsequence of the symmetry relation Eq. (2) and the exact
(k) of wi; on two different scales. results arev,/, = 3 andag = 2. The exponeni,, has
also been estimated, using DMR@{» = 1.5 ~ 2) [9].
) X all thethe PMRG results are in principle more precise than the
following correlations are equal [8]: QMC results, but finite size effects in DMRG studies are
(SES%) = (ritrd) = <4S?S;r7.l{37jﬂ> =wij, (2 much_b!gger due to 'ghe use of open boundary co_nditions.
Thus it is not surprising that our estimate Eq. (3) is much
independent of the indices, 8 = x,y,z. This relation  more precise.
is valid for zero as well as for finite temperatures. While At finite temperatures, the dominant components in
the first equality also holds for an arbitrary @J X SU(2)  the correlation functionw;;(T) = (SjS3)(T) [note that
symmetric model with exchange symmetry of thend7  Eg. (2) holds also at finitd@] which result from the soft
variables, the second one is a special property of the SU(4hodes atk = 0 and 7 /2, no longer decay according
symmetric model. Allthe QMC results have been checkedo a power law, but exponentially. The corresponding
for the symmetry relation Eq. (2) and perfect agreementorrelation lengthgy(7) and¢ . »(T) may be different.
within the statistical error has been found. The correlation functiogS; S;) (T) is shown as a func-
The correlation functionw;; shows a clear 4-site peri- tion of [i — j| in Fig. 2 for a system of lengtih = 200
odicity (see Fig. 1). Its sign is positive jf — j| = 4N,
N integer and negative otherwise. The reason for the lat-
ter is the tendency for every four neighboring sites to form 0.00005 =
a SU(4) singlet [8]. Furthermore, from Fig. 1, it can be |
seen that the correlations for distan¢es- j| = 4N and
4N + 2 decay much slower than fdi — j| = 4N + 1 0.00000
and4N + 3. The explanation of this fact is simple: The
system considered here has low-lying excitatioris at 0,
7 /2, and 7 (see Fig. 3 of [7]) each of them leading to .-
. . ; 0.
a mode with wave vectok in the long distance correla- -,
tions. The amplitudes of these modes are all expected to’
decay according to a power law, but with different criti-
cal exponentsy,. From the results fow;; (Fig. 1), it can -0.00010 | |
be concluded that the two dominant modes are those with o
k = 7 /2 (positive prefactor) and = 0 (negative prefac- ¢
tor). This is also reflected in the Fourier transfofif(k) -0.00015
of the correlation functiomw;;, having a characteristic cusp
structure att = 0, /2, and# (see Fig. 1b). While the
cusps ak = 0 and /2 are quite sharp, the onefat= =, FIG. 2. QMC results fomw;;(T) = (S;S;) (T) for a system of
however, is not so pronounced, indicating thatkthe 77  lengthL = 200 with PBC and at temperatut@ = 0.05/ (solid

mode is of all the three the least dominant mode in the corR0iNts). As a guide to the eye, the correlations at distances
. . i — jl| = 4N + m are connected by a separate (dotted) line
relation function.

- for eachm = 0, 1, 2, and 3. The inset shows the long distance
_The two critical exponents > and ay can be dete"" correlations. The error bars are much smaller than the symbols.
mined from the QMC data of the real space correlatioriThe open squares show the fit with Eq. (4).

Note that according to the SU(4) symmetry,
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with PBC at a temperatufe = 0.05J. To find the correct 0.4 : :
low-temperature form, describing the long distance behav- ; 0.015
ior (li — jl > ¢&o, &-/2) of the correlationsw;;(T), one +
has to consider not only a phase skiff") in thek = 7 /2 o3 LT w1 0010 =
mode, but also an incommensuration effect of this compo- ' ’ :
nent, i.e., that the period is shifted away frégm= 7 /2 - - 1 0.005
by an amounté,(T). This is due to the asymmetry of = -
the excitation spectrum at the point= 7 /2 which mani- W 0.2 o 004 0000 =
fests itself at finitel’, where also excited states contribute ™ ¢ /3 =
to w;;(T). This asymmetry can be seen in Fig. 2 of [9], ™/
where the degeneracy of the lowest spin wave branch is 01 ¢t
indicated. As the degeneracy fbr> 7 /2 is larger than e o0&,
for k < 7 /2, we expect the weight of the/2 mode to
be shifted to a highek value. This effect can also be 00 = ‘ ‘ ‘
observed in the Fourier transforf¥ (k, T') of the correla- 0.00 0.02 0.04 0.06 0.08
tion function, where the maximum a&t= 7/2 at7 =0 T/
mO\_/es“to highek valuez V\;hﬁnr |_ncr|eas_es. f FIG. 3. Inverse correlation lengthg,' (open circles) and
Finally, we propose the following low-temperature form f;}z (filled circles) and the periodicity shifty, (inset) as a

for the correlationsy;; (T') with |i — jI > &, £7 /2 function of temperature. The leadirigdependences [Eq. (5)]
are also shown (solid, dotted, and dashed lines).

Wij(T) — bO(T)e*|i*j|/§o(T) + bﬂ/z(T)e*U*ijﬂ/z(T)

X cod[m/2 + ¢i(T)](i — j) + 6(T);. (4) similar result should be obtained, using field theory) and

Fitting the above form to the QMC data of,;(T) for ~ N€nce¢,» =~ J/(3T), again in very good agreement with
variousT gives the temperature dependence of the six paEd: (5)- In comparison, the leading temperature depen-
rametersbo, £o, bx/2, £x/2, b1, ands. The correspond- dence of the correlation length in the SU(2) AF Heisen-
ing fit for T = 0.05J is shown in Fig. 2. At this point, we Derg model Hug = J >, S; - Si41, vup = mJ/2, and
want to emphasize that it is important to include the effecn (L) = 7v/L]is ¢%(T) = J/(2T).
of incommensuration (i.e., including a paramefgr # 0) The leadingl" dependence of the periodicity shift
to get accurate fits in the temperature radgdJ < T <=  has been obtained by fitting the very low-temperature data
0.08J and that at finite temperatures and larger distancedVith AT, and the result is¢(T) < T>!"=%15. This
also the correlations at distaneg' + 3 can become posi- Scaling exponent is quite close to the value of 2, which
tive (Fig. 2), different from the correlations at= 0. For ~ one would expect from a simple calculation, considering
all consideredr', the correlation lengths are much smallerthe thermal admixtures of the spin wave branches.
than the length of the syster (> 6& /2, 6&o), so that fi- Flna_lly, we concentrate on the entropyer site of t.he
nite size effects are negligible. SU(4) invariant model of Eq.. (1). I dependence(T)is

In Fig. 3 the inverse correlation lengtks ' and f;/lz shown |n.F|g. 4. With deg:reasn?g the entropy decreases
as well as the periodicity shifb, are plotted as a function monotonically from the high-temperature valuetito O at
of temperature. At very low temperatures,’ and&_}, ~ Zero temperature. At _Iow temperatures the; entropy ShOWS
both show a linear behavior (see Fig. 3) and the leading !inear behavior as in the AF SU(2) Heisenberg chain

temperature dependences are found to be Hyg). The slope in the spin-orbital model, however, is
Z _q about a factor of 3 bigger than that in the AF Heisenberg
Exp = (299 £ 0.03)7, £ =(3.90 = 0.09)T .

chain (see inset of Fig. 4). This is consistent with the
(5)  statement of Affleck [10] that the AF Heisenberg model
Therefore both correlation lengths scale with'. This  is equivalent toonefree massless boson, while the SU(4)
scaling behavior, including the prefactor, can be moti-invariant spin-orbital model is equivalenttireemassless
vated in the following way. By the Lorentz invariance of bosons. The velocity of these bosons are all equaltg2
the underlying field theory of the considered model and byf7,12]. Therefore we expect the low energy density of
exchange of the imaginary time and space direction, ongtates (and hence the entropy) of these two models just
hasé&i(T) = v/Ax(L = v/T), whereA,(L) is the finite  to differ by a factor of 3.
size gap to the lowest excitations at wave vecteksin a The implications of these results for mean-field treat-
system of lengthL. v is the spinon velocity, which in our ments are far reaching. To put them in perspective, it is
model is7J/2. Fork = 0, the lowest lying excitation useful to compare them to the standard mean-field decou-
energy isAg(L) = v(2m/L) leading to&, = J/(4T), in  pling [3] (S * Si+1) (7i - Tivy) = (Si * Siv1)Ti * Tiv1 +
good agreement with Eq. (5). Fdr= /2, the finite (7; - 7;41)S; - Siv1 — (S; - Si+1){7; - Ti+1). Such a de-
size results of Ref. [9] show that, »(L) = 0.75A¢(L) (a  coupling has a number of consequences. First of all,
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15 obtained exactly in terms of these dimer wave functions,
on2  and the energy per bond is equal td; i.e., each bond
has now managed to reach its ground-state energy thanks
to the fluctuations between these six local configurations.
Note that this is no longer true for longer systems, indi-
cating that 4-site clusters should be a good starting point
for building variational wave functions. This can be seen
as the physical origin of the 4-site periodicity of the cor-
1 relation functions. A similar conclusion was reached in
] Ref. [8] on the basis of the SU(4) symmetry.
%0 05 10 15 Finally, if the ground state is a resonating-valence-bond-
— SU(4) spin orbital model like state involving resonances between different local
""" SU(2) AF Heisenberg chain configurations, we are led to the conclusion that the ele-
0.0 ‘ ‘ ‘ ‘ mentary excitations cannot be pure spin or orbital excita-
0 2 4 6 8 10 tions, but composite objects where spin and orbital degrees
T/ of freedom are intimately mixed. Work is in progress to
FIG. 4. Temperature dependence of the entropper site get a more precise pictqre of these excitatiqns. In addition,
for the spin-orbital model Eq. (1) (solid line). In the inset the presented results will also have dramatic consequences
the entropy per site is shown on larger temperature scaléor more realistic models where the interchange symmetry
together with the entropyyup per site of a SU(2) spin/R  between spin and orbital degrees of freedom is only ap-
AF Heisenberg chain{y;p) (dotted line). For comparison also proximately valid. This is left for future investigation.
3sup 1s shown (dashed line). We thank G. Felder, B. Normand, F.C. Zhang, and
especially T. M. Rice for many fruitful discussions. One
of us (B. F.) is also grateful for financial support from the

';heu;:)trgetfélo?ofggg gg(s, g‘.S"; \l/\)/ ii;" <';'Tf+7rl')> ?h;u(l:?egf Swiss Nationalfonds. The calculations were performed on
q P Pl ol the Intel Paragon at the ETH Ziirich.

contradiction both with the fact that all of them are negative
according to our results and with the property of Eq. (2).
Besides, and more importantly, if such a decoupling was a

valid approximation, the low-lying excitations should con-
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