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The ground-state properties and thermodynamics of the one-dimensional SU(4) symmetric spin
system with orbital degeneracy are investigated using the quantum Monte Carlo loop algorithm.
The spin-spin correlation functions exhibit a 4-site periodicity, and their low-temperature behavior
is controlled by two correlation lengths that diverge like the inverse temperature, while the entropy is
linear in temperature and its slope is consistent with three gapless modes of velocitypy2. The physical
implications of these results are discussed. [S0031-9007(98)08155-1]
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In many transition metal oxides, the electron config
ration has an orbital degeneracy in addition to the sp
degeneracy. The sign and magnitude of the spin-spin int
actions is then determined by the orbital occupation lea
ing to strong coupling between orbital and spin structu
(for an overview see Ref. [1]). The Hamiltonian describ
ing such spin-1y2 systems with twofold orbital degenerac
(isospint ­ 1y2) was derived by Kugel and Khomskii [2]
and extensively studied in the context of V2O3 by Castel-
lani et al. [3] more than 20 years ago. The Hamiltonia
has rotation symmetry in$S space. In$t space this symme-
try is broken by a Hund’s rule term. Recently, the inve
tigation of these spin-orbital models has attracted renew
interest, following the progress in the experimental studi
of transition metal oxides [4–6].

In this Letter we study the Hamiltonian derived by Kuge
and Khomskii on a 1D chain, but neglecting the Hund
rule term. In this isotropic case the Hamiltonian is

H ­ J
X

i

µ
2 $Si ? $Si11 1

1
2

∂ µ
2 $ti ? $ti11 1

1
2

∂
. (1)

It is rotationally invariant not only in$S space, but also
in $t space. Furthermore it has an interchange symme
between spins and orbitals. In such a case, the stand
mean-field approach [3] that leads to ferromagnetic co
relations for one type of variables and antiferromagne
(AF) correlations for the other one should not be approp
ate. Our main motivation is to study the consequences
this symmetry, in more detail.

A number of analytic results have already been obtain
on this model. The system considered here [Eq. (1
belongs to a class of models which is exactly solvab
in one dimension by the Bethe ansatz. The Bethe ans
solution obtained by Sutherland gives the exact groun
state energy and the “spin wave” excitations as well [7
For the model of Eq. (1), there are 3 gapless modes, hav
all a common velocityy ­ pJy2. They are shown in
Fig. 3 of Ref. [7].
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Second, it was pointed out very recently [8,9] that th
HamiltonianH has not only the obvious SUs2d 3 SUs2d
symmetry, but that the full symmetry of Eq. (1) is th
even higher symmetry group SU(4). SUsNd symmetric
models in one dimension were studied by Affleck, usin
conformal field theory [10]. He showed that any one
dimensional system of SUsNd symmetry is critical. He
calculated explicitly the critical exponents and zero tem
perature correlations and showed that at the very lo
energy scale these models are equivalent toN 2 1 free
massless bosons. These general results naturally also
ply to our case withN ­ 4.

In this Letter we present the first investigation of th
thermodynamic properties of the model Eq. (1). For th
purpose we have adapted the continuous time quant
Monte Carlo (QMC) loop algorithm [11] to spin-orbital
models. For this kind of simulations three types of loo
updates have to be included: Spin (orbital) loop updat
where only spin (orbital) variables are changed, but al
spin/orbital loop updates where both spin and orbital a
simultaneously updated. In fact, this algorithm is so pow
erful that we can also use it to investigate the zer
temperature properties of the model: Systems of leng
L ­ 100 [with periodic boundary conditions (PBC)] and
inverse temperaturesbJ ­ 400 or 800 (b ¿ Lyy) are
predominantly in the ground state, and the small contrib
tions from thermally excited states are negligible compar
to our statistical errors. In this way, the ground-state pro
erties can be investigated. We start with a brief summa
of these results since some of them differ significantly fro
the density matrix renormalization group (DMRG) resul
reported in Ref. [9].

The ground-state energy for a chain ofL ­ 100 with
periodic boundary condition is found to bee0sL ­ 100d ­
20.8253s1d, in perfect agreement with the Bethe ansa
result for the infinite chain (20.825 118 9 . . .) [7]. The
zero-temperature correlation functionwijsT ­ 0d ;
kSz

i Sz
j l sT ­ 0d as a function ofji 2 jj (for L ­ 100) is

shown in Fig. 1a and its Fourier transform in Fig. 1b.
© 1999 The American Physical Society 835
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FIG. 1. (a) QMC results for the correlation functionwij ;
kSz

i Sz
j l (solid points) as a function ofji 2 jj for a chain

of length L ­ 100 with PBC which is predominantly in
the ground state (for details see text). The correlations
ji 2 jj ­ 1, 2, and 4 (which are out of the plot range
are20.071 68s1d, 20.040 11s1d, and 0.008 261(4), respectively.
The statistical error bars of the QMC calculations are mu
smaller than the symbols. (b) shows the Fourier transfo
S zskd of wij on two different scales.

Note that according to the SU(4) symmetry, all th
following correlations are equal [8]:

kSa
i Sa

j l ­ kta
i ta

j l ­ k4Sa
i Sa

j t
b
i t

b
j l ­ wij , (2)

independent of the indicesa, b ­ x, y, z. This relation
is valid for zero as well as for finite temperatures. Whi
the first equality also holds for an arbitrary SUs2d 3 SUs2d
symmetric model with exchange symmetry of the$S and $t
variables, the second one is a special property of the SU
symmetric model. All the QMC results have been check
for the symmetry relation Eq. (2) and perfect agreeme
within the statistical error has been found.

The correlation functionwij shows a clear 4-site peri-
odicity (see Fig. 1). Its sign is positive ifji 2 jj ­ 4N ,
N integer and negative otherwise. The reason for the l
ter is the tendency for every four neighboring sites to for
a SU(4) singlet [8]. Furthermore, from Fig. 1, it can b
seen that the correlations for distancesji 2 jj ­ 4N and
4N 1 2 decay much slower than forji 2 jj ­ 4N 1 1
and4N 1 3. The explanation of this fact is simple: The
system considered here has low-lying excitations atk ­ 0,
py2, and p (see Fig. 3 of [7]) each of them leading to
a mode with wave vectork in the long distance correla-
tions. The amplitudes of these modes are all expected
decay according to a power law, but with different crit
cal exponentsak. From the results forwij (Fig. 1), it can
be concluded that the two dominant modes are those w
k ­ py2 (positive prefactor) andk ­ 0 (negative prefac-
tor). This is also reflected in the Fourier transformS zskd
of the correlation functionwij , having a characteristic cusp
structure atk ­ 0, py2, andp (see Fig. 1b). While the
cusps atk ­ 0 andpy2 are quite sharp, the one atk ­ p,
however, is not so pronounced, indicating that thek ­ p

mode is of all the three the least dominant mode in the c
relation function.

The two critical exponentsapy2 and a0 can be deter-
mined from the QMC data of the real space correlatio
836
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function wsrd ; wij, ji2jj­r . Fitting wsrd to the form
bpy2fr2apy2 1 sL 2 rd2apy2 g coss p

2 rd 1 b0fr2a0 1 sL 2

rd2a0g for the range20 & r & 50 (making explicit use
that our system has PBC), we find

apy2 ­ 1.50 6 0.01, a0 ­ 1.85 6 0.16 . (3)

The best fit is obtained forbpy2 ­ 0.091, apy2 ­ 1.499,
b0 ­ 20.035, anda0 ­ 1.85. A precise estimate ofa0
is not simple since thek ­ 0 mode is only a relative small
superposition on the top of the much strongerk ­ py2
mode. The exponentapy2, however, can be determined to
high precision. These results are in very good agreem
with the prediction of Affleck, who calculated the critica
behavior of the SU(4) correlation function in an arbitrar
SU(4) symmetric model using conformal field theory [10
This correlation function is proportional towij, as a
consequence of the symmetry relation Eq. (2) and the ex
results areapy2 ­ 3

2 anda0 ­ 2. The exponentapy2 has
also been estimated, using DMRG (apy2 . 1.5 , 2) [9].
The DMRG results are in principle more precise than th
QMC results, but finite size effects in DMRG studies a
much bigger due to the use of open boundary conditio
Thus it is not surprising that our estimate Eq. (3) is muc
more precise.

At finite temperatures, the dominant components
the correlation function,wijsT d ; kSz

i Sz
j l sT d [note that

Eq. (2) holds also at finiteT ] which result from the soft
modes atk ­ 0 and py2, no longer decay according
to a power law, but exponentially. The correspondin
correlation lengthsj0sT d andjpy2sT d may be different.

The correlation functionkSz
i Sz

j l sT d is shown as a func-
tion of ji 2 jj in Fig. 2 for a system of lengthL ­ 200
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FIG. 2. QMC results forwijsTd ; kSz
i Sz

j l sTd for a system of
lengthL ­ 200 with PBC and at temperatureT ­ 0.05J (solid
points). As a guide to the eye, the correlations at distanc
ji 2 jj ­ 4N 1 m are connected by a separate (dotted) lin
for eachm ­ 0, 1, 2, and 3. The inset shows the long distanc
correlations. The error bars are much smaller than the symb
The open squares show the fit with Eq. (4).
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with PBC at a temperatureT ­ 0.05J. To find the correct
low-temperature form, describing the long distance beha
ior (ji 2 jj ¿ j0, jpy2) of the correlationswijsT d, one
has to consider not only a phase shiftdsTd in thek ­ py2
mode, but also an incommensuration effect of this comp
nent, i.e., that the period is shifted away fromk ­ py2
by an amountfksT d. This is due to the asymmetry o
the excitation spectrum at the pointk ­ py2 which mani-
fests itself at finiteT , where also excited states contribut
to wijsT d. This asymmetry can be seen in Fig. 2 of [9
where the degeneracy of the lowest spin wave branch
indicated. As the degeneracy fork . py2 is larger than
for k , py2, we expect the weight of thepy2 mode to
be shifted to a higherk value. This effect can also be
observed in the Fourier transformS zsk, T d of the correla-
tion function, where the maximum atk ­ py2 at T ­ 0
moves to higherk values whenT increases.

Finally, we propose the following low-temperature form
for the correlationswijsT d with ji 2 jj ¿ j0, jpy2:

wijsT d ­ b0sT de2ji2jjyj0sTd 1 bpy2sT de2ji2jjyjpy2sTd

3 coshfpy2 1 fksT dg si 2 jd 1 dsTdj . (4)

Fitting the above form to the QMC data ofwijsT d for
variousT gives the temperature dependence of the six p
rametersb0, j0, bpy2, jpy2, fk, andd. The correspond-
ing fit for T ­ 0.05J is shown in Fig. 2. At this point, we
want to emphasize that it is important to include the effe
of incommensuration (i.e., including a parameterfk fi 0)
to get accurate fits in the temperature range0.01J # T #

0.08J and that at finite temperatures and larger distanc
also the correlations at distances4N 1 3 can become posi-
tive (Fig. 2), different from the correlations atT ­ 0. For
all consideredT , the correlation lengths are much smalle
than the length of the system (L . 6jpy2, 6j0), so that fi-
nite size effects are negligible.

In Fig. 3 the inverse correlation lengthsj
21
0 and j

21
py2

as well as the periodicity shiftfk are plotted as a function
of temperature. At very low temperatures,j

21
0 andj

21
py2

both show a linear behavior (see Fig. 3) and the lead
temperature dependences are found to be

j
21
py2 ­ s2.99 6 0.03dT , j21

0 ­ s3.90 6 0.09dT .
(5)

Therefore both correlation lengths scale with1yT . This
scaling behavior, including the prefactor, can be mo
vated in the following way. By the Lorentz invariance o
the underlying field theory of the considered model and
exchange of the imaginary time and space direction, o
hasjksT d ­ yyDksL ­ yyT d, whereDksLd is the finite
size gap to the lowest excitations at wave vectorsøk in a
system of lengthL. y is the spinon velocity, which in our
model ispJy2. For k ø 0, the lowest lying excitation
energy isD0sLd ­ ys2pyLd leading toj0 ­ Jys4T d, in
good agreement with Eq. (5). Fork ­ py2, the finite
size results of Ref. [9] show thatDpy2sLd ø 0.75D0sLd (a
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FIG. 3. Inverse correlation lengthsj21
0 (open circles) and

j
21
py2 (filled circles) and the periodicity shiftfk (inset) as a

function of temperature. The leadingT dependences [Eq. (5)]
are also shown (solid, dotted, and dashed lines).

similar result should be obtained, using field theory) an
hencejpy2 ø Jys3T d, again in very good agreement with
Eq. (5). In comparison, the leading temperature depe
dence of the correlation length in the SU(2) AF Heisen
berg model [HHB ­ J

P
i

$Si ? $Si11, yHB ­ pJy2, and
DHB

p sLd ­ pyyL] is jHB
p sT d ­ Jys2T d.

The leadingT dependence of the periodicity shiftfk

has been obtained by fitting the very low-temperature da
with lTb, and the result isfksT d ~ T 2.1160.15. This
scaling exponent is quite close to the value of 2, whic
one would expect from a simple calculation, considerin
the thermal admixtures of the spin wave branches.

Finally, we concentrate on the entropys per site of the
SU(4) invariant model of Eq. (1). ItsT dependencessT d is
shown in Fig. 4. With decreasingT , the entropy decreases
monotonically from the high-temperature value ln4 to 0 at
zero temperature. At low temperatures the entropy sho
a linear behavior as in the AF SU(2) Heisenberg cha
(HHB). The slope in the spin-orbital model, however, i
about a factor of 3 bigger than that in the AF Heisenbe
chain (see inset of Fig. 4). This is consistent with th
statement of Affleck [10] that the AF Heisenberg mode
is equivalent toone free massless boson, while the SU(4
invariant spin-orbital model is equivalent tothreemassless
bosons. The velocity of these bosons are all equal topJy2
[7,12]. Therefore we expect the low energy density o
states (and hence the entropy) of these two models j
to differ by a factor of 3.

The implications of these results for mean-field trea
ments are far reaching. To put them in perspective, it
useful to compare them to the standard mean-field deco
pling [3] s $Si ? $Si11d s $ti ? $ti11d ! k $Si ? $Si11l $ti ? $ti11 1

k $ti ? $ti11l $Si ? $Si11 2 k $Si ? $Si11l k $ti ? $ti11l. Such a de-
coupling has a number of consequences. First of a
837
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FIG. 4. Temperature dependence of the entropys per site
for the spin-orbital model Eq. (1) (solid line). In the inse
the entropy per site is shown on larger temperature sc
together with the entropysHB per site of a SU(2) spin-1y2
AF Heisenberg chain (HHB) (dotted line). For comparison also
3sHB is shown (dashed line).

the correlation functionks $Si ? $Si11d s $ti ? $ti11dl should be
equal to the product ofk $Si ? $Si11l with k $ti ? $ti11l, in clear
contradiction both with the fact that all of them are negati
according to our results and with the property of Eq. (
Besides, and more importantly, if such a decoupling wa
valid approximation, the low-lying excitations should co
sist of two branches corresponding to spin and orbital
citations, respectively. This is again in clear contradicti
with the three low-lying modes of the Bethe ansatz whi
control the low-temperature physics according to our e
tropy results. So there is a manifest breakdown of
mean-field decoupling when spin and orbital degrees
freedom play a symmetric role.

What is then the nature of the low-lying excitations?
full answer cannot be given on the basis of the present
sults, but a number of conclusions can be reached.
us start with the 2-site problem. The ground state
sixfold degenerate (spin-triplet3 orbital-singlet or spin-
singlet3 orbital-triplet), and energy may be gained b
allowing fluctuations between these local configuratio
The mean-field decoupling fails because it cannot ta
advantage of these fluctuations. Elementary consid
tions show that the best mean-field decoupling leads t
very poor estimate of the ground-state energy (20.3863
vs 20.8251 for the exact result). That it is possible t
gain energy by allowing the system to fluctuate locally
best exemplified by the 4-site problem. In fact, the e
act ground state for a 4-site cluster with periodic or op
boundary conditions, the SU(4) singlet of Ref. [8], can
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obtained exactly in terms of these dimer wave functions
and the energy per bond is equal to21; i.e., each bond
has now managed to reach its ground-state energy than
to the fluctuations between these six local configuration
Note that this is no longer true for longer systems, indi
cating that 4-site clusters should be a good starting poi
for building variational wave functions. This can be seen
as the physical origin of the 4-site periodicity of the cor-
relation functions. A similar conclusion was reached in
Ref. [8] on the basis of the SU(4) symmetry.

Finally, if the ground state is a resonating-valence-bond
like state involving resonances between different loca
configurations, we are led to the conclusion that the ele
mentary excitations cannot be pure spin or orbital excita
tions, but composite objects where spin and orbital degre
of freedom are intimately mixed. Work is in progress to
get a more precise picture of these excitations. In additio
the presented results will also have dramatic consequenc
for more realistic models where the interchange symmetr
between spin and orbital degrees of freedom is only ap
proximately valid. This is left for future investigation.
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