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We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physica
mechanism: Periodic power exchange via induced coherence, which can lead to stable spiral
and the formation of dynamical two-soliton states. Our theory explains earlier observations an
provides a number of predictions which are verified experimentally. Finally, we show theoretically
and experimentally that soliton spiraling can be controlled by the degree of mutual initial coherenc
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Self-guided optical beams (orspatial solitons) have at-
tracted substantial research interest in the last three deca
[1]. Although interactions between two-dimensional (2D
solitons in Kerr and non-Kerr media have been studie
extensively, only the recent discoveries of stable thre
dimensional (3D) solitons in different nonlinear bulk
media [2] initiated an experimental study of fully 3D
interactions of solitary waves. Recently, experimen
demonstrating nonplanar interaction and spiraling
spatial solitons in a photorefractive medium have bee
reported [3]. However, in spite of earlier interesting
suggestions of nonplanar soliton interactions of Ref. [4
the experimental results [3] have not been explaine
theoretically thus far. Also, it has been shown [5] tha
coherently interactingsolitons do not allowany stable
spiraling, in sharp contrast with the experimental observa
tions [3]. The fundamental question remains:Is soliton
spiraling possible at all as a stable dynamical regime o
soliton interaction?

In this Letter we develop, for the first time to our
knowledge, a general theory of soliton spiraling in a sa
urable nonlinear bulk medium. We derive an analyt
cal model describing stable soliton spiraling and predi
a number of new effects in soliton interactions, suc
as an induced coherenceand control over 3D inter-
actions, which we verify here experimentally, using
experimental setup similar to that reported earlier [3
Importantly, our analytical model and numerical simu
lations show that interacting-spiraling solitons conserv
angular momentum. We believe that this result is
core foundation for future research on 3D soliton con
trol, resembling the conservation of linear momentum
the interaction of more conventionals1 1 1d-dimensional
solitons [6].

First, we formulate our model. We consider incohe
ent beam interaction in an isotropic saturable nonline
medium described by two coupled normalized nonline
Schrödinger equations:
0031-9007y99y82(1)y81(4)$15.00
des
)
d
e-

ts
of
n

],
d
t

-

f

t-
i-
ct
h

].
-
e
a
-

in

r-
ar
ar

i
≠u
≠z

1 =2
'u 2

u
1 1 juj2 1 jwj2

­ 0 ,

i
≠w
≠z

1 =2
'w 2

w
1 1 juj2 1 jwj2

­ 0 ,
(1)

where u and w are the beam envelopes, andz is the
propagation distance;=2

' ; ≠2y≠x2 1 ≠2y≠y2 accounts
for the diffraction in the transversesx, yd plane. This
system, in the 2D case (i.e., for=

2
' ; ≠2y≠x2), gives rise

to incoherently coupled soliton pairs [7] and to incohere
collisions [8] which have both been demonstrated wi
photorefractive screening solitons [9].

We look for stationary radially symmetric solitary
waves of Eqs. (1) in the formu ­ Usrd expsibuzd,
w ­ Wsrd expsibwzd, where the envelopesU and W
satisfy the equations

d2U
dr2 1

1
r

dU
dr

2 buU 2
U

1 1 U2 1 W2 ­ 0 ,

d2W
dr2 1

1
r

dW
dr

2 bwW 2
W

1 1 U2 1 W2 ­ 0 .
(2)

Here,r ;
p

x2 1 y2 is the radial coordinate, andbu and
bw are nonlinearity-induced shifts of the propagation co
stants. System (2) has two families of soliton solution
hU ­ Gusbu, rd, W ­ 0j and hU ­ 0, W ­ Gwsbw , rdj,
which can be found numerically by solving the equa
tion G00

a 1 G0
ayr 2 baGa 2 Gays1 1 G2

ad ­ 0, where
a ­ hu, wj. These solutions can be characterized by t
soliton powersPsbad ; 2p

R`

0 G2
asba , rdr dr.

In addition to the one-component solitons, a
bu ­ by ; b there exists a family of two-componen
(vector) solitons defined as U ­ Gsb, rd cosu,
W ­ Gsb, rd sin u, where the variableu characterizes
a power distribution between the components. Movin
solitons of Eqs. (1) can be obtained by a well-know
gauge transformation.
© 1998 The American Physical Society 81
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To study the soliton collisions analytically, we em
ploy a Lagrangian formalism [10,11]. Equations (1
can be obtained from the Lagrangian density:L ­
siy2d supuz 2 uup

zd 2 sjuxj2 1 juyj2d 1 siy2d swpwz 2

wwp
z d 2 sjwxj2 1 jwyj2d 2 lns1 1 juj2 1 jwj2d. Now

we consider the interaction between two spatial solito
su1, w1d andsu2, w2d, takingu ­ u1 1 u2, w ­ w1 1 w2
and introducing the following free parameterss j ­ 1, 2d:
the positions of soliton centerssxj , yjd and the common
and relative phases of the soliton componentsuj andyj,
which we denote byfj andcj , respectively. Following
[11], we assume that the soliton parameters vary slow
in z and integrate the Lagrangian density overx and y.
After this averaging procedure, we reduce the number
equations by using the conservation of the angular m
mentum,M ­ sV0Py4, wheres is the impact parameter
(defined as the minimum distance between the trajector
of noninteracting solitons), andV0 ; dR0ydz is the initial
value of the soliton relative velocity (see Ref. [5]).

The averaged Lagrangian can be presented asL ­ L1 1

L2 2 Uint, where the first two terms are the individua
contributions of the vector solitons, and the third term
corresponds to an effective interaction potential given b

Uint ­ MRs2V 2
0 ys2R2d 2 UincohsRd 2 UcohsRd

3

"
cosu2 cosf2 cos

√
c2

2

!

1 cosu1 sin f2 sin

√
c2

2

!#
, (3)

where MR ; Py2, u6 ; u2 6 u1, f6 ; f2 6 f1,
c6 ; c2 6 c1, and R ;

p
sx2 2 x1d2 1 s y2 2 y1d2

is the relative distance between the interacting soliton
The functionsUincoh and Ucoh are expressed in terms
of the soliton overlap integrals,Ucoh ­ 2

R R`

2`fG3
1G2y

s1 1 G2
1d 1 G3

2G1 ys1 1 G2
2dg dx dy, Uincoh ­R R`

2`fG2
1G2

2ys1 1 G2
1d 1 G2

2G2
1ys1 1 G2

2dg dx dy. The
first term in Eq. (3) describes acentrifugal force(which
is always repulsive), the second term anincoherent
attraction,and the third acoherent interaction.WhenR
is large enough, the soliton interaction is determined b
the tail asymptoticsGsrd , expf2

p
s1 1 bd rgy

p
r, that

yields UcohsRd , expf2
p

s1 1 bd Rgy
p

R, UincohsRd ,
expf22

p
s1 1 bd RgyR, andUcoh ¿ Uincoh. For smaller

R, althoughUcoh . Uincoh, Uincoh is also important.
The average Lagrangian generates the followin

equations:

MRR̈ 1
≠Uint

≠R
­ 0, Mff̈2 1

≠Uint

≠f2

­ 0 ,

Mc
Ùc2 2 F1

≠Uint

≠u1

1 F2
≠Uint

≠u2

­ 0 , (4)

Mu
Ùu7 7

1
2

F3
≠Uint

≠f2

7 F4
≠Uint

≠c2

­ 0 ,

where F1 ; cosu1 sinu2, F2 ; sinu1 cosu2, F3 ;
sinu6 cosu6, andF4 ; sinu6 cosu7; the dots stand for
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derivatives in z, and the effective masses areMf ­
2≠Py≠b, and Mc ­ Mu ­ scos2u2 2 cos2u1dP.
First, we consider a reduced model assuming an ad
tional symmetry,u1 ­ py2. Then, the resulting system
hasstable stationary points.Solving this reduced system
numerically, we observe linear and even strongnonlinear
oscillations near the stable minima. In general, the per
of these oscillations inR is different from the periods of
u2 and c2. A stable stationary point corresponds to
smooth spiraling of the solitons.

However, the analysis of the full dynamical system (
brings a surprise: Stable stationary points are abs
The main reason for this is the negativeness of the eff
tive massMf in Eqs. (4), which is a typical destabiliza
tion mechanism for any coherent soliton interaction [5
However, numerical simulations show thatstable dynami-
cal spiraling is still possible. To understand the physic
mechanism of such adynamical stabilization,we analyze
the effective interaction potential (3). AlthoughUcoh .

Uincoh even for smallR, large-scale periodic quarter-perio
out-of-phase oscillations inu2 and c2 can significantly
suppressthe effective value of theUcoh term, thus low-
ering its maximum value by a factor of 5 or more. As
result, the incoherent attraction dominates and solitons
come trapped in a spiraling configuration with oscillatio
near someRmin and large-scale quasiperiodic oscillations
in bothu2 andc2 (see Fig. 1).

Solving Eqs. (1) [and also (4)] numerically, we confirm
the mechanism of the dynamical soliton spiraling.
summary, our theory and numerics show the following.

(i) Trapping of two beams in a stable spiraling is possib
for a large range of parameters [examples are shown, e
in Fig. 1, fors ­ 10, and Fig. 2(b), fors ­ 7].

(ii) Initially mutually incoherentcolliding solitons [i.e.,
u7s0d ­ py2] becomepartially coherentdue to a periodic
power exchange between their components. Moreov
stable spiraling is always accompanied by a large-sc
periodic power exchange.

(iii) Initially introduced partial coherence between in
teracting solitons (seed mutual coherence) can result in
repulsion of out-of-phase solitons and fusion of in-pha
solitons, preventing spiraling. In this sense, modifying t
initial mutual coherence can easily transform stable spir
ing into repulsion (“escape”) or fusion.

(iv) For smallers and also for some values ofs where
the spiraling and power-exchange frequencies beco
commensurable, the soliton spiraling is not possible [s
Figs. 2(c) and 2(d)]. A series of “resonance windows
similar to those discovered for 2D soliton interactions [12
are observed. For such values ofs, oscillations inR are
stronger andUcoh can become dominant (even being e
fectively suppressed), thus leading to a decay of spirali

To verify our theory, we perform a series of exper
ments. The experiments are carried out using the p
torefractive screening nonlinearity [3,9]. In essence, t
photorefractive nonlinearity is anisotropic [13], whic
makes it nonideal to test our model. However, ma
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FIG. 1. Stable soliton spiraling observed in direct modelin
of Eqs. (1) for b ­ 20.5, R0 ­

p
500, s ­ 10, V0 ­ 0.2,

and u2 ­ u1 ­ py2. (a) 3D view; (b) small oscillations
of the relative distance between solitons; (c) large-amplitud
oscillations foru2 (quasiperiodic power exchange).

experimental results suggest that, for a large range
parameters, the anisotropy is fairly small: Isolated 3
solitons are almost fully circular [14], and planar collision
between 3D coherent solitons are almost fully isotrop
[15], except for a special case, e.g., when the collisio
plane is normal to thec axis of the crystal and for a
particular initial distance between the solitons [16]. In
this respect, even though the photorefractive nonlinear
is not isotropic in 3D, one can still employ it to qualita-
tively study the predictions of our theory. We therefor
extrapolate the known analytic results for 2D photore
fractive screening solitons [9], which were all confirmed
experimentally [17], to 3D which concurs with Eqs. (1).

The experimental setup is similar to that of Ref. [3]
Two soliton beamsA andB of wavelength 488 nm, with
power in the order ofmW and radii of 12mm FWHM,
are launched into a strontium barium niobate (SBN
crystal whose electro-optic coefficient is278 pmyV
and the length is 6.5 mm. The initialy coordinate of
B is 9 mm higher than that ofA, and B is launched

s = 13.0
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FIG. 2. Examples of different dynamical regimes of the
soliton interaction obtained by direct modeling of Eqs. (1
for b ­ 20.5, V0 ­ 0.2, and u2 ­ u1 ­ py2. The initial
separation is defined asR0 ­

p
400 1 s2. (a) Weak soliton

interaction (no spiraling); (b) stable spiraling; (c),(d) unstabl
spiraling (decay of spiraling configuration via resonances).
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with its initial trajectory inclined (relative to that of
A) by an angle of 0.01 radians in thex direction and
0.0012 radians in they direction. The intensity ratio
between the soliton peak and the background illumin
tion, juj

2
bg ­ jwj

2
bg, is about 5. A field of4.2 kVycm

is applied against the crystallinec axis to generate the
solitons. The impact parameter is adjusted by shifti
the initial x coordinate ofB at the input, while all other
initial conditions are kept unchanged. When the sep
ration in thex coordinate is larger than 31mm as shown
in Figs. 3(a)–3(c), solitonsA and B barely interact
[compare with Fig. 2(a), which shows a passing of tw
solitons as if they do not interact at all]. As the impa
parameter is reduced by shiftingB closer toA, as shown in
Figs. 3(d)–3(f),A andB’s trajectories are bent due to th
attraction force between them, and the amount of bend
(scattering) is dependent on the impact parameter. T
mimics a classical particle scattering experiment. W
distinguishA from B and measure the power exchange b
monitoring the output within a time window much shorte
than the response time of the SBN crystal (1 s) afterA or
B is blocked. The measured power exchange is sma
than 1% in Figs. 3(a)–3(f).

When we further reduce the separation in thex coor-
dinate to 9mm [Fig. 3(g)], the two solitons rotate around
each other [cf. Fig. 1 and Fig. 2(b)]. We find that 60% o
A and 46% ofB at the input go toA0 (at the output) and
the rest goes toB0. This power exchange is what we hav
calledinduced coherence.We also find that a small varia-
tion in B’s initial position or trajectory, which does no
change the rotation angle of beam trajectories by mu
can cause the fraction of the exchanged power to v
considerably [compare with Fig. 1(c)]. In some spiralin
cases, as low as a 5% level of power exchange has b
measured at the output of the crystal. In a similar spir
ing experiment, but with different initial trajectories, w
find that the power exchange also depends on the inten
ratio, that is, the level of saturation of the nonlinearity. I
that experiment, 17% power exchange is measured w
solitons are generated with the intensity ratio of 12 a
only 2% for the intensity ratio of 4.

We then reduce thex separation further to 4mm
[Fig. 3(h)], and find thatA andB interact strongly, but the
spiraling seems to be unstable [compare to the numer
result shown in Figs. 2(c) and 2(d)]. Finally, whenB is
launched with its initial position beyondA [Fig. 3(i)], they
simply escape from each other.

In order to study how the initial partial coherence affec
the soliton interaction, we introduce at the input a “se
coherence” beamC which is coherent withB but overlaps
entirely and copropagates withA. When C is added,
the intensity ofA is reduced to make the total intensit
sA 1 Cd equal to that ofB. The relative phase between
C andB is adjusted with a tilted piece of glass. BeforeC
is launched, we make sure the initial conditions ofA and
B generate a spiraling pair [Figs. 4(a) and 4(b)]. Whe
C is first adjusted to be out of phase withB [indicated
83
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FIG. 3. (a)–(i): Collision of two mutually incoherent solitons
with different values of the impact parameter.

by the dark notch between them at the input, Fig. 4(c)],B
andA 1 C cannot spiral but just escape from each othe
as shown in Fig. 4(d), although the power inC is only
about 28% ofA 1 C. When C is in phase withB, as
shown in Fig. 4(e) (each intensity ofA or C is 50% of
B), A, B, and C fuse into one beam [Fig. 4(f)]. These
experimental results agree with our theory, emphasizin
the fact that seed coherence can be used to control
interaction outcome: spiraling, escape, or fusion.

In conclusion, we have analyzed the full 3D interactio
and spiraling of spatial solitons in an isotropic saturab
bulk medium. The analysis, numerical simulations, and
series of experiments have revealed the important physi
mechanism of the stable spiraling: a periodic powe
exchange between the interacting beams via induc
coherence. Our results and conclusions are expected
hold for other types of (even anisotropic and nonsaturab
nonlinearity that depends on the total beam power a
supports stable self-trapped beams in a bulk.
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FIG. 4. (a),(b): Stable soliton spiraling of initially incoherent
beams. (c),(d): A “seed coherence” beamC, which isp out of
phase withB, prevents the spiraling. (e),(f ): When the beamC
is in phase withB, it causes all three beams to fuse.
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