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Induced Coherence and Stable Soliton Spiraling
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We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical
mechanism: Periodic power exchange via induced coherence, which can lead to stable spiraling
and the formation of dynamical two-soliton states. Our theory explains earlier observations and
provides a number of predictions which are verified experimentally. Finally, we show theoretically
and experimentally that soliton spiraling can be controlled by the degree of mutual initial coherence.
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Self-guided optical beams (spatial soliton$ have at- ou u

. 2 —
tracted substantial research interest in the last three decades ’3_Z + Viu - 1+ |ul2 + w2 0,
[1]. Although interactions between two-dimensional (2D) 1)
solitons in Kerr and non-Kerr media have been studied ,-a_w NI 2 A —
extensively, only the recent discoveries of stable three- 0z * L+ [ul> + |w]? ’

d|m§n5|onql _(_3D) solitons in different nonlinear bulk where u and w are the beam envelopes, andis the

media [2] initiated an experimental study of fully 3D ion di 2 _ 2.0 5

interactions of solitary waves. Recently, experiment ropagation |§tanpeVl = 0%/ox" + 0°/ay accounts
’ : or the diffraction in the transverséx,y) plane. This

demonstrating nonplanar interaction and spiraling osystem, in the 2D case (i.e., f8F = 92/9x2), gives rise
spatial solitons in a photorefractive medium have been?’: ; . !

. . o .~ 1o incoherently coupled soliton pairs [7] and to incoherent
reported [3]. However, in spite of earlier interesting

suggestions of nonplanar soliton interactions of Ref. [4] collisions [8] which have both been demonstrated with

the experimental results [3] have not been explaine&)h\?\;gr?ggﬁt'}/grSg;zgg:]na% sorlggir:is” [g]é mmetric solitar
theoretically thus far. Also, it has been shown [5] that onary y_ y . y
: . ) waves of Egs. (1) in the formu = U(r) expiB.z),
coherently interactingsolitons do not allowany stable — W(r) expli B.y2), where the envelopes/ and W
spiraling, in sharp contrast with the experimental observa-" w2, P

tions [3]. The fundamental question remainks soliton satisfy the equations

spiraling possible at all as a stable dynamical regime of 42U 1 dU U _
soliton interaction? o dr? + b odr BuU — 1+ U2+ w2 0,

In this Letter we develop, for the first time to our s )
knowledge, a general theory of soliton spiraling in a sat- aw + 1aw _ BuW — w —-0.
urable nonlinear bulk medium. We derive an analyti- dr? rodr " 1+ U? + W?

cal model describing stable soliton spiraling and predict
a number of new effects in soliton interactions, suchHere,r = /x> + y? is the radial coordinate, anél, and
as an induced coherencand control over 3D inter- S, are nonlinearity-induced shifts of the propagation con-
actions, which we verify here experimentally, using stants. System (2) has two families of soliton solutions:
experimental setup similar to that reported earlier [3]{U = G,(B.,r),W =0} and{U = 0,W = G,,(By, 1)},
Importantly, our analytical model and numerical simu-which can be found numerically by solving the equa-
lations show that interacting-spiraling solitons conserveion G” + G/, /r — BaGas — G4 /(1 + G2) = 0, where
angular momentum. We believe that this result is ax = {u,w}. These solutions can be characterized by the
core foundation for future research on 3D soliton con-soliton powersP(8,) = 2 fg G2(Bg,r)rdr.
trol, resembling the conservation of linear momentum in In addition to the one-component solitons, at
the interaction of more conventiondl + 1)-dimensional B, = B, = B there exists a family of two-component
solitons [6]. (vectop solitons defined as U = G(B,r) coséb,
First, we formulate our model. We consider incoher-W = G(8,r) sin 6, where the variablegd characterizes
ent beam interaction in an isotropic saturable nonlineaa power distribution between the components. Moving
medium described by two coupled normalized nonlineasolitons of Egs. (1) can be obtained by a well-known
Schrédinger equations: gauge transformation.
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To study the soliton collisions analytically, we em- derivatives inz, and the effective masses aM, =
ploy a Lagrangian formalism [10,11]. Equations (1) —9P/dB, and M, = My = (cOSf_ — coS0.)P.
can be obtained from the Lagrangian densityf =  First, we consider a reduced model assuming an addi-
(i/2) wu, — uul) — (luel* + luy®) + (i/2)(w*w, —  tional symmetry, = /2. Then, the resulting system
wwi) = (Iwel> + Iwy[*) = In(1 + [ul*> + [wl]*). Now hasstable stationary points.Solving this reduced system
we consider the interaction between two spatial solitonsumerically, we observe linear and even strooglinear
(u1, wr) and(up, wy), takingu = u; + ur, w = wi + wo oscillations near the stable minima. In general, the period
and introducing the following free parametérs= 1,2):  of these oscillations iR is different from the periods of
the positions of soliton centefs;,y;) and the common 6#- andi-. A stable stationary point corresponds to a
and relative phases of the soliton componentandv;,  smooth spiraling of the solitons.
which we denote byb; and;, respectively. Following However, the analysis of the full dynamical system (4)
[11], we assume that the soliton parameters vary slowlyrings a surprise: Stable stationary points are absent.
in z and integrate the Lagrangian density oweandy.  The main reason for this is the negativeness of the effec-
After this averaging procedure, we reduce the number ofive massM, in Egs. (4), which is a typical destabiliza-
equations by using the conservation of the angular motion mechanism for any coherent soliton interaction [5].
mentum,M = sV,P /4, wheres is the impact parameter However, numerical simulations show tisable dynami-
(defined as the minimum distance between the trajectoriesal spiralingis still possible. To understand the physical
of noninteracting solitons), ariy = dR,/dz is the initial mechanism of such dynamical stabilizationywe analyze
value of the soliton relative velocity (see Ref. [5]). the effective interaction potential (3). Althoudh,, >

The averaged Lagrangian can be presentéd-aslL; + Uincon €ven for smalR, large-scale periodic quarter-period
L, — Uint, Where the first two terms are the individual out-of-phase oscillations i@- and — can significantly
contributions of the vector solitons, and the third termsuppresghe effective value of thé/.,, term, thus low-
corresponds to an effective interaction potential given by ering its maximum value by a factor of 5 or more. As a

U = Mes2V2/(2R?) — Ui (R) — U (R result, the inco_herent_att_raction qlominfates gnd so[itons be-
nt 73 Vo /2R incon (R) con(R) come trapped in a spiraling configuration with oscillations
X | cosf_ cos¢_ co Y- near SomeRmin andlarge-;cale guasiperiodic oscillations
2 in both§_ andy— (see Fig. 1).

Solving Egs. (1) [and also (4)] numerically, we confirm

, (3) the mechanism of the dynamical soliton spiraling. In

summary, our theory and numerics show the following.
where Mg = P/2, 0+ =0, * 0y, ¢+ = = ¢, (i) Trapping of two beams in a stable spiraling is possible
Y=o = ¢y, and R =02 — x1)2 + (v2 — 1) forq large range of parameters [examples are shown, e.g.,
is the relative distance between the interacting solitondn Fig. 1, fors = 10, and Fig. 2(b), fors = 7]. _
The functionsUimeon and Ueon are expressed in terms (i) Initially mutually incoherencolliding solitons [i.e.,
of the soliton overlap integrald/co, = 2ff°fm[G?G2/ 0+(0) = 7 /2] becomepartially c.oheren’duetoaperlodlc
a + Glz) + GSGI/(I + G%)] dx dy, Uineon = power ex_chgnge_ between their components. Moreover,
ffcfoo[G%Gg/(l T G12) + G%Gf/(l n G%)]dx dy. The stal_ole_splrallng is always accompanied by a large-scale
first term in Eq. (3) describes eentrifugal force(which ~ Periodic power exchange. _
is always repulsive), the second term amcoherent (|||).In|t|ally introduced partial coherence between_ in-
attraction, and the third aoherent interaction.Wheng  teracting solitons geed mutual coherencean result in
is large enough, the soliton interaction is determined by€Pulsion of out-of-phase solitons and fusion of in-phase

: . _ solitons, preventing spiraling. In this sense, modifying the
~ V(I +
;Tsl 52"(]""3:8;5“3“2?&? \/% R(]l/ \/E’B )[;]/ \/hfl’e;hft initial mutual coherence can easily transform stable spiral-

= _ ing into repulsion (“escape”) or fusion.
Ieexglthzovu(g:h;;cﬁ )i]gfn’cindlg ;Z’:h >|: ;JI‘S“SO;‘rﬁpZ?{aiTa”er (iv) For smallers and also for some values efwhere

The average Laarangian  generates the followin the spiraling and power-exchange frequencies become
9 grang 9 g1:ommensurable, the soliton spiraling is not possible [see

+ cosfy sin ¢ sin(%)

[

equations: Figs. 2(c) and 2(d)]. A series of “resonance windows,”

MgR + Wine _ 0, My + Win _ 0, similar to those discovered for 2D soliton interactions [12],
JR de— are observed. For such valuessofoscillations inR are

OUint Uit stronger andJ.,, can become dominant (even being ef-

My- — F 06, Fr70— =0, (4 fectively suppressed), thus leading to a decay of spiraling.
To verify our theory, we perform a series of experi-

Myb= * lF3 Uin T F Wine _ 0. ments. The experiments are carried out using the pho-
2 dep— P torefractive screening nonlinearity [3,9]. In essence, the
where F; = cosf; sinf_, F, =sinf,cosf_, F; =  photorefractive nonlinearity is anisotropic [13], which

sinf+ cosf-, andF, = sinf+ cosf=; the dots stand for makes it nonideal to test our model. However, many
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with its initial trajectory inclined (relative to that of
A) by an angle of 0.01 radians in the direction and
0.0012 radians in the direction. The intensity ratio
between the soliton peak and the background illumina-
tion, |ulj, = Iwlj,, is about 5. A field of4.2 kV/cm
> 0 100 200 300 400 is applied against the crystalline axis to generate the
TZ (© z solitons. The impact parameter is adjusted by shifting
the initial x coordinate ofB at the input, while all other
initial conditions are kept unchanged. When the sepa-
ration in thex coordinate is larger than 3im as shown
» in Figs. 3(a)—3(c), solitonsA and B barely interact
Ro 0 100 200 300 400 [compare with Fig. 2(a), which shows a passing of two
z solitons as if they do not interact at all]. As the impact
FIG. 1. Stable soliton spiraling observed in direct modelingparameter is reduced by shiftilycloser toA, as shown in
of Egs. (1) for B = —0.5, Ry = /500, s =10, V5 =02,  Figs. 3(d)—3(f),A andB’s trajectories are bent due to the
g?ot'hifr;a%;e: d?;t/azhce(ageg’% e‘ﬂe;‘g”t(obgsf'r(”c‘;‘”la?sg"Lantj'olri‘tsu q attraction force between them, and the amount of bending
oscillations foré_ (quasiperiodic power exc,hange).g P ?s_ca_ttering) is d_ependen_t on the impact para.meter. This
mimics a classical particle scattering experiment. We

experimental results suggest that, for a large range diistinguishA from B and measure the power exchange by
parameters, the anisotropy is fairly small: Isolated 3DMonitoring the output within a time window much shorter
solitons are almost fully circular [14], and planar collisions than the response time of the SBN crystal (1 s) after
between 3D coherent solitons are almost fully isotropicB is blocked. The measured power exchange is smaller
[15], except for a special case, e.g., when the collisiothan 1% in Figs. 3(a)—-3(f). o
plane is normal to the: axis of the crystal and for a ~ When we further reduce the separation in theoor-
particular initial distance between the solitons [16]. Indinate to 9um [Fig. 3(g)], the two solitons rotate around
this respect, even though the photorefractive nonlinearit@ach other [cf. Fig. 1 and Fig. 2(b)]. We find that 60% of
is not isotropic in 3D, one can still employ it to qualita- A and 46% ofB at the input go tod’ (at the output) and
tively study the predictions of our theory.  We thereforethe rest goes t@’. This power exchange is what we have
extrapolate the known analytic results for 2D photore-calledinduced coherenceWe also find that a small varia-
fractive screening solitons [9], which were all confirmedtion in B’s initial position or trajectory, which does not
experimentally [17], to 3D which concurs with Egs. (1). change the rotation angle of beam trajectories by much,
The experimental setup is similar to that of Ref. [3]. can cause the fraction of the exchanged power to vary
Two soliton beamst and B of wavelength 488 nm, with considerably [compare with Fig. 1(c)]. In some spiraling
power in the order ofuW and radii of 12um FWHM, cases, as low as a 5% level of power exchange has been
are launched into a strontium barium niobate (SBN)mMeasured at the output of the crystal. In a similar spiral-
crystal whose electro-optic coefficient i878 pm/V NG experiment, but with different initial trajectories, we
and the length is 6.5 mm. The initial coordinate of find that the power exchange also depends on the intensity
B is 9 um higher than that ofd, and B is launched ratio, that is, the level of saturation of the nonlinearity. In
that experiment, 17% power exchange is measured when
(@) (b) solitons are generated with the intensity ratio of 12 and

57130 B s70 only 2% for the intensity ratio of 4.

15! I s : We then reduce ther separation further to 4m
il 1E ] [Fig. 3(h)], and find tha#t and B interact strongly, but the
5F {1 5} ¢

spiraling seems to be unstable [compare to the numerical

0 100 200 300 400 0 100 200 300 400 result shown in Figs. 2(c) and 2(d)]. Finally, whénis
05 () z ) z Ia_lunched with its initial position beyordi [Fig. 3(i)], they
] s=3.0 ] simply escape from each other.
15¢ : In order to study how the initial partial coherence affects

the soliton interaction, we introduce at the input a “seed
coherence” bear which is coherent wittB but overlaps
0 100 200 300 400 0 100 200 300 400 entirely and copropagates with. When C is added,
the intensity ofA is reduced to make the total intensity
FIG. 2. Examples of different dynamical regimes of the 4 4 () equal to that of8. The relative phase between

soliton interaction obtained by direct modeling of Egs. (1) ; . . ; :
for B = —0.5, Vo = 0.2, andf_ = 0, = =/2. The initial C andB is adjusted with a tilted piece of glass. Befdre

separation is defined aB = 400 + 52. (a) Weak soliton is launched, we make sure the initial conditionsAo&dnd
interaction (no spiraling); (b) stable spiraling; (c),(d) unstableB generate a spiraling pair [Figs. 4(a) and 4(b)]. When
spiraling (decay of spiraling configuration via resonances).  C is first adjusted to be out of phase with [indicated
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Output

Input

Input

(a

B and C are & out of phase

©) (d

B and C are in phase

(e) (f)

(e)

FIG. 4. (a),(b): Stable soliton spiraling of initially incoherent
beams. (c),(d): A “seed coherence” bea@mnwhich is 7 out of
phase withB, prevents the spiraling. (e),(f): When the beam
is in phase withB, it causes all three beams to fuse.
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