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Mobile Small Polaron
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Extending the Fréhlich polaron problem todéscreteionic lattice we study a polaronic state with a
small radius of the wave function but a large size of the lattice distortion. We calculate the energy
dispersion and the effective mass of the polaron with g perturbation theory and with the exact
Monte Carlo method in the nonadiabatic and adiabatic regimes, respectively. The “small” Frohlich
polaron is found to be lighter than the small Holstein polaron by 1 or more orders of magnitude.
[S0031-9007(98)08335-5]

PACS numbers: 71.38.+i, 74.20.Mn

A free electron interacting with the dielectric polariz- polaron, thesmall Fréhlich polaron (SFP) turns out to be
able continuum was studied by Pekar [1] and Frohlich [2]much lighter than the small Holstein polaron (SHP) with
in the strong and weak coupling limit, respectively. Thisthe same binding energy. We argue that SFPs are relevant
is the case of carriers interacting with optical phonongjuasiparticles in the cuprates.
in ionic crystals under the condition that the size of the A quite general electron-phonon lattice Hamiltonian
self-trapped state is large compared to the lattice conwith one electron and the “density-displacement” type of
stant so the lattice discreteness is irrelevant [3]. The moshteraction is given by [9,12,15]
sophisticated treatment of thiafge” or “continuum” po-

laron is due to Feynman and co-workers [4] with the path- H = — Ztnn/CI/cn + Zhwqa(d;adqa +1/2)
integral method, substantially extended in the past decade nn’ qe

[5]. This treatment leads to a mass enhancement, but not s

to a hopping conduction or to a narrow polaron band. - Z fma@)cycnéma - (1)

mnao

When the electron-phonon coupling constaris large,
all of the states in the Brillouin zone are involved in the Herea corresponds to the different phonon modggs, is
formation of the polaron wave function, so the polarona normal coordinate at sita, and fy,,(n) is theforce be-
radius becomes comparable with the lattice constaartd  tween the electron at siteand the normal coordinatg,., .
the continuum approximation is no longer valid. Basic If characteristic phonon frequencies are large com-
features of thesmall polaron were well recognized a long pared to the electron kinetic enerdyy >  (nonadiabatic
time ago by Tjablikov [6], Yamashita and Kurosawa [7], regime), then one can apply a powerful analytic method,
Sewell [8], Holstein [9], Lang and Firsov [10], and others, based on the Lang-Firsov canonical transformation [10]
and are described in several review papers and textboolsd the subsequerit/A perturbation technique. Intro-
[11-15]. So far, analytical and numerical studies haveducing the phonon operators &g, = Zq(umqad;a +
been mainly confined to the Holstein model with a ShOft-u;qadqa) With #mqe = ﬁl/z(zNqua)*lﬂeiqm, N the
range electron-phonon interaction. Exact diagonalizatiomumber of sites, ansf the ion mass, one obtains the trans-
of several vibrating molecules coupled with one electrorformed Hamiltonian
[16,17], variational [18,19], and Monte Carlo calculations

[20] revealed an excellent agreement with analytical results H = ¢ SHeS = — Z [rn,nc,‘;/cn

of Holstein [9] and Lang and Firsov [10] for the energy of n'#n

the ground state and first excited states at larg&olaron

mass is very large in the Holstein model, unless phonon - E, ZCICn + qua(d;radqa +1/2). (2
n qa

frequencies are extremely high. The size of the region,
where the small Holstein polaron is localized, is about theHere S = > g0 (1@ga) ' ttmqa fma M)l cndd, — H.c.,
same as the size of the lattice distortion, each of the ordeandE,, is the familiar polaronic shift,

of the lattice constant. Both sizes are almost identical also 1

for the large Frohlich polaron, but much larger. E, = me(O)fm,a(O) cosq(m — m’).
In this Letter we study a problem of the lattice polaron mm'qa qo

with a long-range Frohlich interaction [21]. This quasipar- 3)

ticle has a small (atomic) size of the electron localizationThe polaronic shift is the natural measure of the strength
region but a large size of the lattice distortion. While theof the electron-phonon interaction. It defines the electron-
large Frohlich polaron is heavier than the large Holsteirphonon coupling constant as= E,/zt, wherez is the
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lattice coordination number. The first term in Eq. (2) con-(Holstein model), therg? = E,/(hiw). In general, one
tains the transformed hopping integéal’, which depends  has g> = yE,/(hw) with a numerical coefficienty =

on the phonon operators as 1= 3, fm©0) fm(1)/ 3. far(0), which is less than unity
(n) — (') for the canonical Frohlich interaction [22].
Onn' = tan exp[ Z fma(®) ~ fma (0 To calculatey explicitly we introduce one- and two-
mqa fiwqa dimensional lattice models with a long-range Coulomb in-

teraction between an electron and ions (see Fig. 1). The
X (umqad:{a - u;qadqa)} . (4) electron in a Wannier state on a site®f the infinite chain
(plane) (<) interacts with the vibrations dll ions of an-
At large A the hopping term in Eq. (2) can be treated asother chain (plane)®) polarized in the direction perpen-
a perturbation. Introducing a set 8f zero-order Bloch dicular to the chains. A strong coupling of carriers with
eigenstates (all with the same energyE,) |k,0) = c-axis polarized phonongifw = 75 meV) has been estab-
N~12% el explik - n)|0), one readily calculates the lished experimentally in YBAu;Og+. [23]. Because of
lowest energy levels in a crystal. Up to the second ordef low c-axis conductivity and high phonon frequency, this

in the hopping integral, the result is coupling is not screened representing an example of a long-
range Frohlich interaction. In this way our model mimics a
0 = £y~ ¥ e ek ) ol on the Cushiane (chaine) coupled wih e -2
- Z Kk, 0 3,0 a'nn’cl]:’cnlkl,nqaﬂz - corresponding force is given by

Herelk’, nq,) is an excited state of the unperturbed Hamil-Here the distance along the chaims — n| is measured

tonian with one electron and at least one phongp;isthe  in Jattice constants:, and the interchain distance is also
phonon occupation number. The second term in Eq. (5)s = 1. For this long-range interaction, one obtaifys =

which is linear with respect to the bare hopping, de-  127x2/2Mw?), g°> = 0.49x2/2MEw3), and g2 =
termines the dispersion of the polaron band with a band@_39Ep/(ﬁw). The effective mass renormalization is

narrowing exponent (at zero temperature) much smaller than in the Holstein model, roughly as
5 1 mspp \/mgH_P- ) ) _ ) )
g (m) = Z INMEiw3 Our analytical consideration is applied df = ¢, and

qa @qa A > 1. To extend the results to the adiabatic case and
to the intermediate coupling we apply a continuous-time

X [ fma(0)fma(0) = fima(0)fma®)] path-integral quantum Monte Carlo (QMC) algorithm, de-

mm’ veloped recently [24]. This method is free from any sys-
X cosq(m — m’). (6) tematic finite-size, finite-time-step, and finite-temperature

errors and allows for exact calculation of the ground-state
energy and the effective mass of the lattice polaron for any
electron-phonon interaction. The method was tested on the
one-dimensional (1D) Holstein model which has been ex-
tensively studied by other methods. Excellent agreement
. . N ; Swith exact diagonalization [16,17], density-matrix renor-

polaronic shiftE, and the exponeng” which describes  y4jization group [25], and variational [18] results was

the mass enhance_ment, as one can see fror_n Eqs.. (3) a1"f(5‘511nd for both the ground-state energy and effective mass.
(6). We now consider the case of a smgl_e dlsper5|onless Exact polaron masses of the one-dimensional model,
phonon modevg, =  and the nearest-neighbor hopping yefined by Eq. (9) and Fig. 1, are compared with 1D Hol-

with an amplituder. One obtains stein polaron masses in Fig. 2. For both phonon frequen-

The third term in Eq. (5), quadratic ify,/, yields a nega-
tive almostk-independentorrection of the order of /A2
to the polaron level shift. It is unrelated to the polaron
effective mass and the polaron tunneling mobility.

In general, there is no simple relation between th

1 ) cies iw = 1.0t and 0.5¢, we found SFP to béeavier
E, = Mol > F20), (7)  than SHP at smallh < 1, but much lighter than SHP
5 ) 1 , O @) O % O
= 1) = — 1)].
¢ =80 = gym0s 210 = fuOfu®]. @ .
, X XX X X
The effective mass renormalizationvis /m = e¢”, where n

m is the bare band mass andm* = 9°E(k)/d(ik)>  FIG. 1. One-dimensional model of the small Frohlich polaron
with £k — 0. If the interaction is localf,,(n) = k8mn 0N chain () interacting with all ions of chain(@).
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1.0 even in the intermediate region of parametérs;y 1 and
hw/t ~ 1. Note, however, that the exact exponent devi-
\ @@ Holstein, »=1.0t ates more and more from the Lang-Firsov approximation
08 1\ B Holstein, a=0.5t 1 with a decreasing adiabatic ratias /7. This is in agree-
O O-— OFrohlich, w=1.0t . . . . .
- — O Frohlich, w=0.5 t ment with the exact diagonalization of a two-site model
[16], where it was shown that the Lang-Firsov approxi-
mation overestimates the polaron mass in the adiabatic
regime.

We also compared our exact QMC masses with the
canonical weak- [2] and strong-coupling [1] continuum po-
laron theory, where the bandwidth is assumed to be infinite.
To make such a comparison meaningful we determine
the Frohlich coupling constant in such a way, that the
ground-state energl, of the continuum approximation is
the same as the one in our model. Then we calculate the
continuum-case mass and compare with @ggp(A). In
Fle' 2.2 Inverse effectiv_e polaron mass ir) units nym"=. the Frohlich weak-coupling regime, one Has= —afiw
[zé“ / (g)] rLOOr detlge C"i?gé(i&r?ezr‘sl'%??‘g E;rlzts?m=a(?g; Frohlich ang m? = (1 + a/6)m. This mass appears to be well

4 ' O sq @ o below our mgp for A < 1. For instance, forA = 0.5

and/Ziw = t, the continuum mass ig; = 1.119m, while
] ] ] _our result ismgp = 1.422m. However, in the strong-
in the strong-coupling regime& > 1.5. The mass ratio coupling regime,A > 1, the continuum approximation

reaches 1 order of magnitude at= 2.75 for i = 1.0t gyerestimates the mass. Using Pekar’s ground-state en-
and atA = 1.75 for hw = 0.5¢. This is in accordance ergy, Ey = —0.1085aiw, and massy* = 0.021a*m

with our analytical approach inthew > tregime. Thus 5, )\ = 2 and fiw = ¢. we find m* = 17.2m which is
the mass ratiOan/mﬁ;_) is a nonmonotonic function of ,,ch larger than our massiip = ‘4.29m_ This differ-
A (see Fig. 3). This is a consequence of the fact thagnce does not depend very much on the dimensionality

mrp(A) is well fitted by a single exponential function, of the polaron. We notice also that if we take into ac-
exp(0.732) for iw = 1.0¢ and ex(f1.404) for iw = 0.5t.  count the intermediate coupling corrections to the ground-
This is not so for the Holstein polaron, in which case agi5te energy of the strong-coupling Pekar polan—=
crossover between two regimes occurs\at 1.5. Itis (010942 + 2.836)iw [26], a continuum polaron mass,
interesting that the numerical exponents found are only,« — | 74, turns out to be much lighter than the exact

slightly smaller than that following from the Lang-Firsov gne for the sama. These estimates underline the crucial
transformation, ex(0.78) and exgl.56A), respectively. (gle of a finite bandwidth.

This shows the excellent accuracy of this transformation 14 check that the light small Fréhlich polaron is not

an artifact of one dimension we calculated its mass for
the two-dimensional (2D) version of the model (9) and
compared it with the 2D Holstein polaron (see Fig. 4). At
A > 1the mass ratieggp /msyp (See inset, Fig. 4) shows
even more sharp fall than in 1D. While SFP is 2.5 times
heavier than SHP at = 1.0, they are equal ak = 1.1,
and SFP is 36 times lighter at = 1.3 (at this coupling
msyp = 400 but msep = 11). The reason for such a
dramatic change is theery large mass of 2D SHP. At
the same time, the mass of SFP grows exponentially but
smoothly, similar to the 1D case. The best fit to QMC
data is expl.621 + 0.19A2).

The physical reason for the small mass of SFP lies in
the form of electron-phonon interaction. A long-range
interaction of the Eq. (9) type induces a lattice distortion
which undergoedess changes when the carrier hops to

0.6

m/m

0.4

0.2

0.0

0.0

1 N

0.0 1.0 20 3.0 the neighboring site, than a distortion induced by a short-
A range interaction. Namely, relative changes are essential
dor the polaron mass. One should also emphasize the

Holstein polarons in 1D. Frohlich polaron is heavier at smallnew type of internal structure of SFP, which is best
A < 1.25 but much lighter atn > 1.25. understood in the extreme strong-coupling limiit;— o,

FIG. 3. The ratio of the effective masses of the Frohlich an
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