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Elastic Interaction between Surface Defects in Thin Layers
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Elastic interactions between defects are investigated in thin layers. Unlike the classical repulsive
law 1/r3 (r = defect separation), we discover that defects in thin layers may either attract or repel
each other depending on the direction (though elastic deformation is isotropic) with respect to the local
geometric force distribution caused by the defect. Moreover, the force distribution fixes the exponent in
the power lawl/r" (e.g., in a square lattice = 4). We discuss the implication of this new behavior
in various situations. [S0031-9007(98)08337-9]

PACS numbers: 68.10.Et, 68.55.—a

Elastic interactions embrace a myriad of situationscaused by the atom on the medium is zeEJ- {i =
ranging from physics to biology. They may come to the0;; = x,y,z). However, the total dipolar moment (not
fore in a number of situations. To name but a few ex-to be confused with the force moment usually used in
amples, they play a crucial role in the following: (i) metal- mechanics) is not zerd);; = >, xff]’- # 0 (I runs over
lurgy [1]; (ii) molecular beam epitaxy (MBE), especially the forces around the defect). So the first effect of the
in the fabrication of low dimensional nanostructures [2]defect is due to the moment.

(e.g., quantum dots and wires); (iii) in gels [3] (e.g., they Assuming that each defect creates a central force
are responsible for various phase transitions); (iv) in biodistribution, it has been shown [6] that the interaction
logical membranes (insertion of proteins leads to elastienergy between two defects on the surface of a semi-
distortions) [4]. A natural way for tackling elastic ef- infinite medium is given by

fects of an object immersed in a given system (e.g., an o 2

island grown on a substrate) is to start from elementary . = m(l — o%)a’f )
effects, such as the elastic strain caused by a localized nt Er3 ’

force, and then sum up the contributions due to extended ) . ) ,
effects (lines—steps on vicinal surfaces; islands; etc.). Where r is the interdefects distance; the Young's

The study of elastic deformations due to point defectgndulus, andr the Poisson ratio. This result shows that
in the bulk is rather an old topic. It has given rise to two identical defects repel each oth_er. _Thls is a classical
various contributions, essentially developed in the 195058Sult that plays a role of reference in this work.
and 1960s [5]. The study of surface defects has turned out W& NOw turn to thin films. The ultimate limit is a
to be more subtle [6—9]. It has been shown that identicaY€"Y thin plate with an atomic thickness. In the absence
point defects on the surface repel each othei as, » ~ ©f buckling, the displacement fielar is purely two
being their separation length. This result holds for a semidimensional, and is a function df,y). In that case
infinite medium. Fhe_Lame equation in the presence of a localized force

There are several important circumstances, howevefS 9iven by [12]
where the medium is of finite thickness. Typical situ- 1+ o 21 + o)
ations where 2D elasticity is particularly important con-  Vu + VV-u) = —-—
cern Langmuir monolayers, phospholipidic bilayers, van -0 Eh
der Waals epitaxy [10], adsorbed layers on a substratelere Eh is the effective two dimensional Young's modu-
[11], etc. A problem of much current interest for the lat- lus (having the dimension of a force per unit length). For
ter example is multilayer growth and nanostructures (e.gpractical application in pure 2D we should substitute for-
quantum dots [2]). It is therefore highly desirable to an-mally Ei by E,p. For a film with finite thicknessE has
alyze elastic effects with a finite thickness, and ultimatelythe meaning of the true bulk Young’'s modulus, ands
in two dimensions, and to discuss their far reaching conthe thickness. In that cagde originates from integration
sequences. This is the main goal of this Letter. of the displacement in the direction [12]. It is easy to

Let us consider the situation where an atom (or molecheck that
cule) is deposited on top of an elastic medium (semi-
infinite solid, thin layer, etc.). On a time scale larger than _ (1+0)P|lo-3 £In(r) + r(r - f) 3)
that associated with sound propagation, the total force 27Eh

£5(r). (2

1+ o r2
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is a solution. A simple dimensional analysis would lead f.&z
to the result that the interaction between two defects in a
2D should behave a$/r>. We show here that this is '4191 r g§
in general not the case. Moreover, we show that the Q#e
interaction may be either attractive or repulsive. /. /.

Let us first concentrate on the situation where each f
defect creates a central force distribution. We begin

a)

with the case of two opposite forces (dipole), with i
being their separation. The dipolar field is given by
ug; =u(r +a) + ulr — a) [wherea <r, and u is i o O o— b)

given by (3)]. A straightforward integration oved

(in polar coordinates) yielda; = (1 — o®)afr/2Ehr2. —e oo Lo I
This expression bears a resemblance to that of the electric

potential created in 2D by a central dipolar distribution. I

The interaction energy with a second defect at a distance

ris given byE;,, ~ [uz - £(r)dr. In view of the Gauss \.

theorem this contribution vanishes identically. (This is ‘o O e— 9
easily checked sinc&ur = 0.) That is to say, two @PJS

defects with central force distributions in an infinite and /.

isotropic medium do not interact elastically. The same /S

result holds in 3D [13], and in fact in any dimension.
For a finite system the problem must be solved with

appropriate boundary conditions. This entails that defects \. \. o
interact through their images. This leads in 2D [14] to 0O d)
an interaction which is typically of the ordgia?/EL?, O-@= "8

whereL is the linear dimension of the system (we assume ° /0

that r is small as compared tb). This is a vanishingly /

sm_a.II contribution for large systems. This is an apparentlx;lG 1. Different geometries of the force distribution imposed
striking feature. It is resolved by noting that the forcepy the crystal symmetry.

distribution in a crystal is obviously not central. This
means that a defect detects the discrete nature of matter,

which is clearly anisotropic. As a consequencedbfects

do indeed interact directly Even though the underlying Epn = —f? -u(r +a) + f® - u(r —a). (5
elastic distortion may in some cases be isotropic (i
particular a hexagonal 2D crystal obeys pure isotropi
elasticity theory), the discrete nature of force distribution

sing for u expression (3), and expanding to leading
order ina/r, we obtain expression (4) with = 2, and

is felt at a long distance. It is not necessary as in 3D [15] (c — 1)
to reconsider elasticity theory in a discrete version. g(0) = —2(1 + o [cog2(6 — 61)]
oo (1+ o)
If a defect creates locally a-fold force distribution
(Fig. 1), using (3), we obtain + cog2(6 — 6,)]]

(1 + o)f?g(0)a"
Ein = ’ 4
' aTEhr" “)
where g(6) is a function to be specified below, amd
represents the angle between thaxis and the vector.
Let us consider explicitly some examples:

— cod46 — 2(6, + 62)];. (6)

The interaction is attractive or repulsive dependingdon
(i) For a fourfold symmetry (Fig. 1b), we find
in a similar manner that the first order contribution

(~1/r?) vanishes identically due to symmetry. Higher
(i) In the presence of tWO opposite forces (Fig. 12) the Corder expansion in powers af/r leads ton = 4. In this

interaction behaves dgr?, and it can be both attractive or case we obtain
repulsive. Let us outline how this result i |s obtalned Each

force creates a field given by (3). Leﬁ (u, )denote the g(0) = (25 — 507) cog40). @

M 3 13 ” 13 b1 ) (2)
displacement field due to defect 1" (‘2") arfe (f,”) the Here again both attraction and repulsion are possible.
ith force in the substrate. The interaction energy betweefhdeed the interaction is repulsive in the interval

1
tvvlo degects is deflged aIEm = —1/23%, & - uf’ —7/8 < 0 < /8, attractive for 7/8 < 6 < 37/8,
ff ’. uf ) = ->. fﬁ ) ( (the defects are |dent|cal) and so on. Note that contrary to what could have been
This reads explicitly (see Fig. 1a) expected from a dimensional analysis/'£?), due to the

788



VOLUME 82, NUMBER 4 PHYSICAL REVIEW LETTERS 25 ANuARY 1999

medium isotropy, this first contribution vanishes exactly.inverted after projecting the vectorial space of displace-
If allowance is made for crystal anisotropy—that is if the ment into subspace orthogonal to any degenerate modes.
elastic distortions are taken to be anisotropic—analyticaBecond, periodic boundary conditions have to be consid-
results [like Eqg. (3)] are not available. We have devel-ered in order to take advantage of the translation invari-
oped a numerical method to handle this situation. Weance of /M and calculate its inverse on the plane wave
will simply outline briefly the method below. basis. Inversion ofM in the case of a square lattice
(i) For a threefold symmetry (Fig. 1c), several situa- has led to the following results. (i) If the dynamical ma-
tions can be encountered. If the defect creates forces &ix is taken to be that of an isotropic medium we find

the nodes of the hexagons, we fig, ~ 1/r*. Here, the above-mentioned/r* for a fourfold force distribu-
1+ o) tion, and 1/r> for a twofold distribution. (ii) If M is

g(8) = =27 ——cod460). (8)  taken to be fully anisotropic, then we find for the fourfold
2 distribution that the leading contribution ig'7* (instead

The interaction is attractive in the secterr/12 < ¢ <  Of 1/r%). Here again both attraction and repulsion are
/12, repulsive whenn/12 < 6 < /4, and so on. Possible. _ ,
Another situation may arise. This is the case where the The question thus arises of to what extent interac-
vertex around the defect may rotate from one positiorfion laws in a thin, but finite, film would produce the
to another (Fig. 1d). We findii, ~ 1/r3. The force semi-infinite limit [11]. Qualitatively, we expect that if

configuration in question may be typical in hexatic phase§lefects interdistance is large in comparison to the film
[16]. Here, thickness, then the interaction should be effectively of a

2D nature. Conversely, for short separations in compatri-

(1-o0) ) son to the thickness, semi-infinite behavior should prevail.
4 Evaluation of the elastic field in a semiexplicit form (in a

form of integrals that are to be tabulated) created by a
Socalized force at the surface of a thin film are known
[17], but are too much involved in order to be listed here.
7/6 < 6 < /2, and so on. Extensive discussions will Using that fielq itis p_ossible to evaluate numer_icg_lly the
defect-defect interaction by using the very definition of

be presented in the future. . ) ,
In order to treat anisotropic elastic deformations, athe interaction energy presented above. We find that at

numerical analysis seemed necessary. This step Wiﬁ/h < 1the interaction is repul_swe and is given br”,
as expected. At larger separatiorys > 1), we recover

allow us to check our analytical results iin the CaS%he above-discussed 2D interaction. If the orientation in
where isotropy is assumed. The numerical strategy is D is such that the interaction is attractive, the full inter-

follows. We consider atoms in a lattice of a given CryStalgction exhibits a minimum at ~ #, as shown in Fig. 2
symmetry. Each atom is coupled to its nearest neighbor It must be emphasized that the film need not be isolated.

with a constant springlike interaction. L&¥ denote the : )
dynamical matrix associated with the oscillators, arige It can adhere to a substrz_ate of arbitrary thickness. The 2D
results apply, then, provided that the two defects are at a

the displacement vector of each atomh@as a dimension X .
2 X N, where N refers to the number of atoms, and distance of the order or larger than the film thickness [11].

the “2” to the two degrees of freedom in 2D). In the
presence of two defects “1” and “2¢; and ¢, represent

g(0) =9 coq30).
For simplicity we give here the expression for the cas
where the relative rotation igr. The interaction is
repulsive in the sector-7/6 < 8 < 7 /6, attractive for

the potential energy of interaction between the defects *°[ ™ : : : ' ' ' ' ]
and the other atoms. The total energy in the harmonic 5°[ ]
approximation takes the form 100 -
1 ,>_\ 50 -
— gt I v
E = ) viMv + (]51 + ¢2. (10) i‘é/ 0.0 szﬁi‘é/d;
c 50 vwv/_ s o _ -
The equilibrium value of the displacement is obtained byg [ /7/ L :;::; ]
minimizing E with respect tov, yielding g sl AT - h/a;3 1
< F <4
v=MtD + @), (11)  eoof / / ——hia=4 | ]
i : ——h/a=5
where we have sdt?) = —a¢;/dv, the force. Reporting zzz o e
into (10) and subtracting the contribution due to the de- 2 4 6 8 10 12 14 16 18 20
fects if they were alone, we obtain for the interaction en- rla

- _ 2) . (1 1. 2 ;
ergy Ein = 1/2_(f( : ,V( "+ £ vO). The question 5 2 Elastic interaction in the case of a fourfold symmetry
amounts thus to inverting the matri [Eq. (11)]. Two  (Fig. 1b) for different layer thicknessesF = 3 x 1079 N,
important remarks have to be made. Fidt, has to be o = 0.3 andE = 3 X 10'! Pa (typical silicon values).
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Let us present further results along with some generadeviations are large enough, a nontrivial coupling between
implications. Steps, or a chain of atoms on a thin film,in and out-of-plane strain may arise. It is known that
are locations of force dipole [18]. As seen above, a dipoléduckling belongs, strictly speaking, to a domain where
creates a field which behavesigs-. In order to evaluate leading order elastic theory does not apply. The full
the field due to a step, we integrate this interaction over @eformation equations are nonlinear.
line from —oo to . We find that the interaction energy  In summary, this work has given a first set of nontrivial
between two linear defects vanishes identically, since itesults on defect elasticity theory in 2D and thin films
involves the combinatiom,({ + a)f — u,(€ — a)f (us (be it isolated or on top of a substrate). We have given
is the displacement due to the step—independent of the short list on general implications. This study opens
distance—and is the interstep distance). In contrast, if several issues in different fields.

a semimonolayer of some nature is deposited on top of a This work was supported by a PROCOPE grant in the
substrate of a different nature, then the edge is a locatioftamework of a French-German cooperation.

of force monopoles [18] (this holds also in general if the

surface stress tensor is anisotropic; that is if its values

on both sides of the linear defect are different). We
find in that case, upon integration of (3) along the line,
the displacement due to a step. Multiplying by a force
and integrating over a unit length leads to the edge-edg
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